精英家教网 > 高中数学 > 题目详情

【题目】已知:函数.

1)求函数在点处的切线方程;

2)求函数上的最大值;

3)当时,试讨论函数的零点个数.

【答案】(1)(2)答案不唯一,具体见解析(3)答案不唯一,具体见解析

【解析】

(1)根据导数的几何意义求得切线的斜率,由点斜式可求得切线方程;

(2)求导后,分类讨论可求得函数上的最大值;

(3)求导后,对分类讨论,利用零点存在性定理可求得.

1)因为,所以,所以

∴函数在点处的切线方程为:

2)因为,所以

①当上单调递增;此时的最大值为

,令,

,即时,上恒成立,所以上单调递增,

,即时,

时,单调递增;

时,单调递减,

综上所述:

①当时,的最大值为

②当时,的最大值为

3)由题意知:,则

上恒成立,

上单调增,

由零点存在性定理可知:上存在唯一的零点,即在上存在唯一零点;

,则

此时,上单调递减,在上单调递增,

所以上取得最小值,

,得

单调增,在上单调减,得

时,,此时函数有且只有一个零点,

,时,,

所以上为增函数,所以,即

有唯一的零点

下面先证:

,得:

时,单调递减,

时,单调递增,

,即得证(当且仅当时取等号);

由零点存在性定理可知:上存在唯一零点,

有两个零点.

时,

又有

∴由零点存在性定理可知:上各存在唯一零点.

所以有两个零点.

综上所述:时,有一个零点,

时,有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为线段上一点,的中点.

(1)证明:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是以为直径的圆上异于的一点,直角梯形所在平面与圆所在平面垂直,且.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:

年份

2014

2015

2016

2017

2018

年份代号

1

2

3

4

5

人均纯收入

5

4

7

8

10

1)求关于的线性回归方程;

2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?

附:回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:

40岁及以下

40岁以上

合计

基本满意

15

30

45

很满意

25

10

35

合计

40

40

80

(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?

(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且

证明:直线与圆相切;

面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到左焦点的距离等于

1)求椭圆的方程;

2)设经过点的直线交椭圆两点,弦的中垂线轴于点

①求实数的取值范围;

②若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________

查看答案和解析>>

同步练习册答案