【题目】甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 ( )
A. B. C. D.
【答案】D
【解析】
分析:本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足|a-b|≤1的情形包括6种,列举出所有结果,根据计数原理得到共有的事件数,根据古典概型概率公式得到结果.
解答:解:由题意知本题是一个古典概型,
∵试验包含的所有事件是任意找两人玩这个游戏,共有6×6=36种猜字结果,
其中满足|a-b|≤1的有如下情形:
①若a=1,则b=1,2;②若a=2,则b=1,2,3;
③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;
⑤若a=5,则b=4,5,6;⑥若a=6,则b=5,6,
总共16种,
∴他们“心有灵犀”的概率为P==.
故选D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判定f(x)的奇偶性并证明;
(Ⅲ)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 在处有极值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在上的最大值和最小值;
(Ⅲ)在下面的坐标系中作出在上的图象,若方程在 上有2个不同的实数解,结合图象求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线l与圆C交于A、B两点.
(1)若|AB|=,求直线l的倾斜角;
(2)若点P(1,1)满足2=,求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数 y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程 ;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式: , )
参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上的三点 、 、 .
(1)求以 、 为焦点且过点 的椭圆的标准方程;
(2)设点 、 、 关于直线 的对称点分别为 、 、 ,求以 、 为焦点且过点 的双曲线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,两坐标系单位长度相同.已知曲线的极坐标方程为ρ=2cosθ+2sinθ,直线l的参数方程为 (t为参数).
(Ⅰ)将直线l的参数方程化为普通方程,将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设曲线C上到直线l的距离为d的点的个数为f(d),求f(d)的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com