精英家教网 > 高中数学 > 题目详情
3.已知a,b,c分别为△ABC三个内角A,B,C的对边,bcosC+$\sqrt{3}$bsinC-a-c=0.求证:A,B,C成等差数列.

分析 已知等式利用正弦定理化简,整理后得到cosB=$\frac{1}{2}$,从而可证明sin2B=sin(A+C),可得2B=A+C,即可证明A,B,C成等差数列;

解答 证明:∵bcosC+$\sqrt{3}$bsinC-a-c=0,
∴利用正弦定理化简得:sinBcosC+$\sqrt{3}$sinBsinC-sinA-sinC=0,…①
即sinBcosC+$\sqrt{3}$sinBsinC=sinA+sinC=sin(B+C)+sinC=sinBcosC+cosBsinC+sinC=sinBcosC+sinC(cosB+1),
∴$\sqrt{3}$sinB=cosB+1,即sin(B-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<B<π,∴-$\frac{π}{6}$<B-$\frac{π}{6}$<$\frac{5π}{6}$,
∴B-$\frac{π}{6}$=$\frac{π}{6}$,即B=$\frac{π}{3}$;
∴cosB=$\frac{1}{2}$
∴sin2B=2sinBcosB=sinB=sin[π-(A+C)]=sin(A+C)
∴2B=A+C
∴A,B,C成等差数列.

点评 本题主要考查等差数列的证明,利用两角和与差的正弦函数公式,正弦定理是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知{an}是等比数列,给出以下四个命题:①{2a3n-1}是等比数列;②{an+an+1}是等比数列;③{anan+1}是等比数列;④{lg|an|}是等比数列,下列命题中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知⊙O1与⊙O1的半径分别为5cm和3cm,圆心距O1O1=7cm,则两圆的位置关系相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{x^2}{10-m}+\frac{y^2}{m-2}=1$,长轴在y轴上,若焦距为8,则m等于(  )
A.4B.8C.14D.38

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=a{x^3}-bx+\frac{c}{x}+2.f(-2)=7,则f(2)$=(  )
A.5B.-7C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.{an}为等比数列,若a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于数列{an},称P(ak)=$\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)为数列{an}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(ak+1)<P(ak),则称数列{an}为“趋稳数列”.
(1)若数列1,x,2为“趋稳数列”,求x的取值范围;
(2)已知等差数列{an}的公差为d,且a1>0,d>0,其前n项和记为Sn,试计算:Cn2P(S2)+Cn3P(S3)+…+CnnP(Sn)(n≥2,n∈N);
(3)若各项均为正数的等比数列{bn}的公比q∈(0,1),求证:{bn}是“趋稳数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如表示采集的商品零售额(万元)与商品流通费率的一组数据:
 商品零售额 9.511.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5 27.5 
 商品流通费率 6.0 4.6 4.0 3.22.8 2.5 2.4 2.3 2.2 2.1 
(1)将商品零售额作为横坐标,商品流通费率作为纵坐标,在平面直角坐标系内作出散点图;
(2)商品零售额与商品流通费率具有线性相关关系吗?如果商品零售额是20万元,那么能否预测此时流通费率是多少呢?(b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=-sin2x-cosx+2,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.

查看答案和解析>>

同步练习册答案