精英家教网 > 高中数学 > 题目详情

f1x)=xf2x)=x2f3x)=2xf4x)=logx四个函数中,x1x2>1时,能使fx1)+fx2)]<f)成立的函数是

A..f1x)=x             B.f2x)=x2     

C.f3x)=2x                                 D.f4x)=logx

 

【答案】

A

【解析】主要考查基本初等函数的图象和性质。

由图形可直观得到:只有f1x)=x为“上凸”的函数.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,(x∈[-1,4])为[-1,4]上的“k阶收缩函数”,则k的取值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江一模)已知函数f(x)的图象是在[a,b]上连续不断的曲线,定义:f1(x)=min{f(t)|a≤t≤x},(x∈[a,b]);f2(x)=max{f(t)|a≤t≤x},(x∈[a,b])其中,min{f(t)|t∈D}表示函数f(t)在D上的最小值,max{f(t)|t∈D}表示函数f(t)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=2sinx(0≤x≤
π
2
)

(1)求f1(x),f2(x)的表达式;
(2)判断f(x)是否为[0,
π
2
]
上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A是由具备下列性质的函数f(x)组成的:
①函数f(x)的定义域是[0,+∞);
②函数f(x)的值域是[-2,4);
③函数f(x)在[0,+∞)上是增函数,分别探究下列小题:
(1)判断函数f1(x)=
x
-2(x≥0)及f2(x)=4-6•(
1
2
x(x≥0)是否属于集合A?并简要说明理由;
(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.
(3)g(x)=x+2a f1(x)求g(x)的最小值用a表示.

查看答案和解析>>

同步练习册答案