精英家教网 > 高中数学 > 题目详情
(2013•徐州三模)已知曲线C:f(x)=x+
a
x
(a>0)
,直线l:y=x,在曲线C上有一个动点P,过点P分别作直线l和y轴的垂线,垂足分别为A,B.再过点P作曲线C的切线,分别与直线l和y轴相交于点M,N,O是坐标原点.若△ABP的面积为
1
2
,则△OMN的面积为
4
4
分析:由题意易得B的坐标,写出垂线的方程联立y=x可得A坐标,进而可得△ABP的面积,可求a,然后可写出切线的方程,进而可得M、N的坐标,可表示出△OMN的面积,代入a值可得答案.
解答:解:由题意设点P(x0x0+
a
x0
),则B(0,x0+
a
x0
),
又与直线l垂直的直线向斜率为-1,故方程为y-(x0+
a
x0
)=-(x-x0
和方程y=x联立可得x=y=x0+
a
2x0
,故点A(x0+
a
2x0
x0+
a
2x0
),
故△ABP的面积S=
1
2
|x0||x0+
a
2x0
-(x0+
a
x0
)|

=
1
2
|x0||
a
2x0
|
=
1
4
a
=
1
2
,解得a=2,
又因为f(x)=x+
a
x
,所以f′(x)=1-
a
x2
,故切线率为k=1-
a
x02

故切线的方程为y-(x0+
a
x0
)=(1-
a
x02
)(x-x0),
令x=0,可得y=
2a
x0
,故点N(0,
2a
x0
),
联立方程y=x可解得x=y=2x0,即点M(2x0,2x0),
故△OMN的面积为
1
2
•|
2a
x0
||2x0|
=2a=4,
故答案为:4
点评:本题考查利用导数研究曲线的切线方程,涉及三角形的面积和方程组的求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•徐州三模)已知i是虚数单位,若
a+3ii
=b+i(a,b∈R)
,则ab的值为
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州三模)某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为
0.032
0.032

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州三模)如图是一个算法流程图,则输出的S的值是
5
8
5
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州三模)若集合A={-1,0,1},B={y|y=cos(πx),x∈A},则A∩B=
{-1,1}
{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州三模)方程
x2
k+1
+
y2
k-5
=1
表示双曲线的充要条件是k∈
(-1,5)
(-1,5)

查看答案和解析>>

同步练习册答案