精英家教网 > 高中数学 > 题目详情
在各项均为正数的等比数列{an}中,若公比为
32
,且满足a3•a11=16,则log2a16=
5
5
分析:设出等比数列的首项,由a3•a11=16,得到首项与公比的关系,把首项用公比表示,然后代入要求的式子化简即可.
解答:解:设等比数列的首项为a1,由公比为
32
,且满足a3•a11=16,得:a1q2a1q10=16,即a1q6=4,所以a1=
4
q6

所以log2a16=log2a1q15=log2(
4
q6
×q15)
=log2(4q9)=log2[4×(
32
)9]
=5.
故答案为5.
点评:本题考查了等比数列的通项公式,考查了等比数列的概念,考查了学生的运算能力,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、在各项均为正数的等比数列{an}中,已知a1=1,a2+a3=6,则数列{an}的通项公式为
an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{an}中,若a1
1
2
a3,2a2
成等差数列,则
a9
a8
=(  )
A、3-2
2
B、3+2
2
C、1-
2
D、1+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{bn}中,若b7•b8=3,则log3b1+log3b2+…+log3b14等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列|an|中,若a2=2,则a1+2a3的最小值是
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{an}中,若log2a2+log2a8=1,则a3•a7=
 

查看答案和解析>>

同步练习册答案