精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,侧面是菱形,

1)若是线段的中点,求证:平面平面

2)若分别是线段的中点,求证:直线平面

【答案】1)证明见解析;(2)证明见解析.

【解析】

1)证明平面,然后利用面面垂直的判定定理可证明出平面平面

2)连接,由中位线的性质可得出,利用线面平行的判定定理可证明出直线平面,同理可得出平面,由面面平行的判定定理得出平面平面,由此可得出直线平面.

1)连接,在中,中点,所以

由于侧面是菱形,则,所以,为等边三角形,的中点,

,所以平面

平面,所以平面平面

2)如下图所示,连接

中,分别为的中点,所以

平面平面,所以平面

同理,,在三棱柱中,

平面平面,所以平面

平面,所以平面平面

平面,所以直线平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有菱草垛、方垛、刍童垛、三角垛等等,某仓库中部分货物堆放成如图所示的“菱草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n件,已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则n的值为( )

A. 7B. 8C. 9D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为

A. 254B. 381C. 510D. 765

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,为等边三角形.

(1)求证:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( 为自然对数的底数).

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的底面边长和侧棱长都为2的中点.

1)在线段上是否存在一点,使得平面平面,若存在指出点在线段上的位置,若不存在,请说明理由;

2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)求的单调递增区间;

(2)当的图像刚好与轴相切时,设函数,其中,求证:存在极小值且该极小值小于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间的频率之比为

)求这些产品质量指标值落在区间的频率;

用分层抽样的方法在区间抽取一个容量为6的样本,将该样本看成一个总体,从中任意

抽取2件产品,求这2件产品都在区间内的概率

查看答案和解析>>

同步练习册答案