精英家教网 > 高中数学 > 题目详情
设椭圆的左,右焦点为,(1,)为椭圆上一点,椭圆的
长半轴长等于焦距,曲线C是以坐标原点为顶点,以为焦点的抛物线,自引直线交曲线C于P,Q两个不同的交点,点P关于轴的对称点记为M,设
(1)求椭圆方程和抛物线方程;
(2)证明:
(3)若求|PQ|的取值范围
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)
已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线交椭圆于A,B两点,且满足为常数。
(1)当直线的斜率k=1且时,求三角形OAB的面积.
(2)当三角形OAB的面积取得最大值时,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率    (     )
               B                 C               D 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求过点且与椭圆有相同焦点的椭圆标准方程解。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点P(x,y)(xy≠0)是曲线上的点,下列关系正确的是(   )
A.B.
C.D.的值与1的大小关系不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆内的点为中点的弦所在直线方程     (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题满分13分)
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方,PA⊥PF.

(1)求点P的坐标;
(2)设M椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离d的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知方向向量为
的右焦点,且椭圆的离心率为.
求椭圆C的方程;
若已知点D(3,0),点M,N是椭圆C上不重合的两点,且,
求实数的取值范围.

查看答案和解析>>

同步练习册答案