精英家教网 > 高中数学 > 题目详情

【题目】选修4-5 不等式选讲

已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若,使得,求实数的取值范围.

【答案】(1)3(2)

【解析】试题分析:(1)由不等式,求得 .再根据不等式的解集为 可得 ,且,由此求得的值.
(2)由题意可得 的最小值小于,求出的范围即可.

试题解析(1)不等式f(x)4,即|x﹣a|≤4,即﹣4≤x﹣a≤4,求得 a﹣4≤x≤a+4.

再根据不等式f(x)4的解集为{x|﹣1≤x≤7},可得a﹣4=﹣1,且a+4=7,求得 a=3.

(2)在(1)的条件下,若f(x)+f(x+5)<4m成立,即|x﹣3|+|x+2|<4m成立,

故(|x﹣3|+|x+2|)min<4m,

|x﹣3|+|x+2|≥|(x﹣3)+(﹣x﹣2)|=5,

∴4m>5,解得:m

即m的范围为(,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(
A.众数
B.平均数
C.中位数
D.标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥面SBD;④EP⊥面SAC.中恒成立的为(

A.①③
B.③④
C.①②
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数满足,且当时,.

(1)求的值;

(2)证明:为单调增函数;

(3)若,求上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex﹣ax﹣2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市随机抽取一年内100 天的空气质量指数(AQI)的监测数据,结果统计如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,300]

>300

空气质量

轻度污染

轻度污染

中度污染

重度污染

天数

6

14

18

27

20

15


(1)若本次抽取的样本数据有30 天是在供暖季,其中有8 天为严重污染.根据提
供的统计数据,完成下面的2×2 列联表,并判断是否有95%的把握认为“该城市本年的
空气严重污染与供暖有关”?

非重度污染

严重污染

合计

供暖季

非供暖季

合计

100


(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x 的关系式为y= 试估计该企业一个月(按30 天计算)的经济损失的数学期望.
参考公式:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

(1)当时,解不等式;

(2)如果不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且a2=b(b+c).
(1)求证:∠A=2∠B;
(2)若a= b,判断△ABC的形状.

查看答案和解析>>

同步练习册答案