精英家教网 > 高中数学 > 题目详情

偶函数f(x)在区间[0,a](a>0)上是单调函数,且f(0)•f(a)<0,则方程f(x)=0在区间[-a,a]内根的个数是


  1. A.
    .3
  2. B.
    .2
  3. C.
    .1
  4. D.
    .0
B
分析:由条件f(0)•f(a)<0可知,f(x)在(0,a)上有至少一个零点,又根据函数在(0,a)上单调,说明函数在(0,a)有且只有一个零点,再根据函数为偶函数,图象关于y轴对称,即可知函数在区间(-a,0)也有唯一零点,因此可以得出答案.
解答:由二分法和函数的单调性可知:函数在区间[0,a]上有且只有一个零点,设为x=x0
∵函数是偶函数,
∴f(-x0)=f(x0)=0
故其在对称区间[-a,0]上也有唯一零点,
即函数在区间[-a,a]上存在两个零点,
故选B.
点评:本题主要考查了函数零点的判定定理,属于基础题.灵活运用单调性和奇偶性以及函数的图象,有助于这类问题的解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(3)的x的取值范围是(  )
A、(-1,2)
B、[-1,2)
C、(
1
2
,2)
D、[
1
2
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(
x+2
)<f(x)的x取值范围是(  )
A、(2,+∞)
B、(-∞,-1)∪(2,+∞)
C、[-2,-1)∪(2,+∞)
D、(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

若偶函数f(x)在区间[-1,0]上是减函数,α,β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果偶函数f(x)在区间[5,7]上是增函数且最小值是6,则f(x)在[-7,-5]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)定义在[-1,1]上的函数y=f(x)是增函数,且是奇函数,若f(a-1)+f(4a-5)>0,求实数a的取值范围.
(2)设定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)<f(m),求实数m的取值范围.

查看答案和解析>>

同步练习册答案