精英家教网 > 高中数学 > 题目详情

可行域A:与可行域B:的关系是

[  ]
A.

AB

B.

BA

C.

BA

D.

AB

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:mx+ny-1=0(m,n∈R*)与x轴相交于点A,与y轴相交于点B,且直线l与圆x2+y2=4相交所得弦长为2.
(Ⅰ)求出m与n的关系式;
(Ⅱ)若直线l与直线2x+y+5=0平行,求直线l的方程;
(Ⅲ)若点P是可行域
2x+y-8≥0
x-y-2≥0
x≤4
内的一个点,是否存在实数m,n使得|OA|+|OB|的最小值为2
6
,且直线l经过点P?若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(必修3做)设计一个求
1
1×2
+
1
2×3
+…+
1
99×100
的值的程序框图.
(必修5做)请画出以A(3,-1)、B(-1,1)、C(1,3)为顶点的△ABC的区域(包括边界),写出表示该区域的二元一次不等式组,并求出以该区域为可行域的目标函数z=3x-2y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知可行域的外接圆C与轴交于点A1、A2,椭圆C1以线段A1A2为短轴,离心率

(Ⅰ)求圆C及椭圆C1的方程;

(Ⅱ)过椭圆C1上一点P(不在坐标轴上)向圆C引两条切线PA、PB、A、B为切点,直线AB分别与x轴、y轴交于点M、N.求△MON面积的最小值.(O为原点).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明市高一(下)期末数学试卷(解析版) 题型:解答题

已知直线l:mx+ny-1=0(m,n∈R*)与x轴相交于点A,与y轴相交于点B,且直线l与圆x2+y2=4相交所得弦长为2.
(Ⅰ)求出m与n的关系式;
(Ⅱ)若直线l与直线2x+y+5=0平行,求直线l的方程;
(Ⅲ)若点P是可行域内的一个点,是否存在实数m,n使得|OA|+|OB|的最小值为2,且直线l经过点P?若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

用图解法求解线性规划问题时,目标函数等值线与可行域的某一条边界线平行时,则(    )

A.有无穷多个最优解                             B.有唯一的最优解

C.最优解无界                                      D.最优解的个数不能确定

查看答案和解析>>

同步练习册答案