精英家教网 > 高中数学 > 题目详情
15.圆x2+y2-6x-2y+3=0的圆心到直线x+ay-1=0的距离为1,则a=(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\sqrt{3}$D.2

分析 圆x2+y2-6x-2y+3=0即(x-3)2+(y-1)2=7的圆心(3,1),再利用点到直线的距离公式即可得出结论.

解答 解:圆x2+y2-6x-2y+3=0即(x-3)2+(y-1)2=7的圆心(3,1)到直线x+ay-1=0的距离d=$\frac{|2+a|}{\sqrt{1+{a}^{2}}}$=1,
∴a=-$\frac{3}{4}$.
故选:B.

点评 本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和${A_n}={n^2}({n∈{N^*}}),{b_n}=\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}({n∈{N^*}})$,数列{bn}的前n项和为Bn
(1)求数列{an}的通项公式;
(2)设${c_n}=\frac{a_n}{2^n}({n∈{N^*}})$,求数列{cn}的前n项和Cn
(3)证明:$2n<{B_n}<2n+2({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,则z=x2+y2的最小值为(  )
A.$\sqrt{10}$B.10C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F为双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为$\frac{32}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若l∥α,m∥α,则l∥mB.若l⊥m,m?α,则l⊥αC.若l∥α,m?α,则l∥mD.若l⊥α,l∥m,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在Rt△ABC中,已知A(-2,0),直角顶点$B(0,-2\sqrt{2})$,点C在x轴上.
(1)求Rt△ABC外接圆的方程;
(2)求过点(0,3)且与Rt△ABC外接圆相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,则四边形ABCD绕AD旋转一周所成几何体的表面积为(  )
A.(60+4$\sqrt{2}$)πB.(60+8$\sqrt{2}$)πC.(56+8$\sqrt{2}$)πD.(56+4$\sqrt{2}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${({x^2}-\frac{1}{2x})^6}$展开式中的常数项是$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.正项等比数列{an}的前n项和为Sn,若${a_1}=1,\;{S_3}=\frac{7}{4}$,则a6=$\frac{1}{32}$.

查看答案和解析>>

同步练习册答案