精英家教网 > 高中数学 > 题目详情
20.如图:Rt△ABC中,∠ABC=90°,AB=BC.以AB为直径的⊙O交OC于D,AD的延长线交BC于E,过点D作⊙O的切线DF交BC于F,连OF.⊙C切⊙O于点D,交BC于G.
(1)求证:OF∥AE.
(2)求$\frac{DE}{AD}$的值.

分析 (1)易证RT△OFD≌RT△OFB(HL),由全等三角形的性质可得∠FOD=∠FOB,又因为OA=OD,所以∠OAD=∠ODA,再由∠BOD=∠OAD+∠ODA=2∠OAD,可得∠FOB=∠OAD,进而可证明OF∥AE;
(2)连接BD交OF于H,易证AB2=AE•AD,BE2=DE•AE,再由三角形性质可得DF:CD=OB:BC=1:2,进而可求出DF,BE的值,由DE:AD=BE2:AB2计算即可.

解答 (1)证明:
∵DF为⊙O的切线,
∴OD⊥DF,
∴∠FDO=90°
又∵∠ABC=90°,OD=OB,OF=OF,
∴在RT△OFD和RT△OFB中,OD=OB,OF=OF,
∴RT△OFD≌RT△OFB(HL),
∴∠FOD=∠FOB,
∵OA=OD,
∴∠OAD=∠ODA,
又∵∠BOD=∠OAD+∠ODA=2∠OAD,
∴∠FOB=∠OAD,
∴OF∥AE.
(2)解:连接BD交OF于H,
∵AB是直径,
∴BD⊥AE,
∴∠BDE=90°,
∵∠BAD=∠EAB,
∴△ABD∽△ABE,
∴AB2=AE•AD,
同理可证△BDE∽△ABE,
∴BE2=DE•AE,
∵∠FCD=∠OCB,∠CDF=∠CBO=90°,
∴△CDF∽△CBO,
∴DF:CD=OB:BC=1:2,
∴DF=$\frac{1}{2}$CD=$\frac{\sqrt{5}-1}{2}$R,
∵BC是⊙O的切线,
∴DF=BF,
∴DF是△BDE的中线,
∴BE=2DF=($\sqrt{5}$-1)R,
∴DE:AD=BE2:AB2=$\frac{3-\sqrt{5}}{2}$.

点评 本题考查了和圆有关的综合题目,用到的知识点有全等三角形的判定和性质、相似三角形的判定和性质、切线的性质、平行线的判定和性质以及等腰三角形的性质,题目的综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是奇函数,当x<0,f(x)=-x2+x.若不等式f(x)-x≤2logax(a>0,a≠1)对?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,则实数a的取值范围是[$\frac{1}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.F是椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的左焦点,P是椭圆上的动点,A(1,1)为定点,则|PA|+|PF|的最小值是(  )
A.9-$\sqrt{2}$B.3+$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,O为坐标原点,A和B分别是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1( a>b>0)和C2:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0)上的动点,满足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,且椭圆C2的离心率为$\frac{\sqrt{2}}{2}$.当动点A在x轴上的投影恰为C的右焦点F时,有S△AOF=$\frac{\sqrt{2}}{4}$
(1)求椭圆C的标准方程;
(2)若C1与C2共焦点,且C1的长轴与C2的短轴等长,求|$\overrightarrow{AB}$|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4$\sqrt{3}$,该椭圆的离心率为$\frac{{\sqrt{6}}}{3}$,以M(-3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)若A,B两点关于原点对称,求圆M的方程;
(3)若点A的坐标为(0,2),求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ex+x-2的零点所在的区间是①(填正确的序号)
①(0,$\frac{1}{2}$)②($\frac{1}{2}$,1)③(1,2)④(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.表是函数f(x)在区间[0,1]上的一些点的函数值.
 x 0 0.25 0.375 0.4065 0.438
 f(x)-2-0.984 -0.260-0.052-0.165
 x 0.5 0.625 0.75 0.875 1
 f(x) 0.625 1.982 2.645 4.35 6
由此可判断:方程f(x)=0的一个近似解为0.5(精确度0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果等差数列{an}中,a1=2,a3=6.则数列{2an-3}是公差为4的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过双曲线$\frac{x^2}{16}-\frac{y^2}{12}=1$左焦点F1的直线交双曲线的左支于M,N两点,F2为其右焦点,则|MF2|+|NF2|-|MN|的值为16.

查看答案和解析>>

同步练习册答案