精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左焦点为,直线与圆交于两点.

1)若直线过点,且,求被椭圆所截得的弦的长度;

2)若已知点在椭圆上,动点满足,请判断点与圆的位置关系,并说明理由.

【答案】(1);(2)点在圆上,理由见解析

【解析】

1)根据圆的方程得到圆心坐标和半径,根据,得到圆心到距离等于的距离,从而得到,得到的方程,从而求出被椭圆所截得的弦长;(2)直线与圆联立,得到,利用向量关系,得到的坐标,从而得到等于半径的平方,从而得到点在圆上.

1)圆

则圆心,半径为.

因为弦长

由勾股定理可得的距离为2

,所以,即,代

入椭圆方程得到

所以被椭圆所截得的弦长为.

2)点在圆上.

.

从而.

因为

所以

又因为点在椭圆上,

所以.

.

所以,点在圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且椭圆过点

1)求椭圆的标准方程;

2)设直线交于两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中

1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).

2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,则实数a的取值范围为(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线的左、右焦点分别为,过右焦点作平行于一条渐近线的直线交双曲线于点,若的内切圆半径为,则双曲线的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂加工某种零件需要经过三道工序,且每道工序的加工都相互独立,三道工序加工合格的概率分别为.三道工序都合格的零件为一级品;恰有两道工序合格的零件为二级品;其它均为废品,且加工一个零件为二级品的概率为.

1)求

2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为元,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,则下列说法中错误的是( )

A.个零点B.最小值为

C.在区间单调递减D.的图象关于轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案