【题目】已知函数为常数.
(Ⅰ)若是函数的一个极值点,求此时函数的单调区间;
(Ⅱ)若对任意的,,不等式恒成立,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】2019年1月1日起我国实施了个人所得税的新政策,新政策的主要内容有:①个税起征点为5000元,②每月应纳税所得额(含税)=收入个税起征点专项附加扣除.赵先生某月收入元,符合赡养老人与子女教育专项附加扣除,共计3000元.
新个税政策的税率表部分内容如下:
级数 | 一级 | 二级 | 三级 | … |
每月应纳税所得额(含税) | 不超过3000元的部分 | 超过3000元至12000元的部分 | 超过12000元25000元的部分 | … |
税率(%) | 3 | 10 | 20 | … |
(1)当时,赵先生当月应缴纳的个税额是多少?
(2)设赵先生当月应缴纳的个税额是元,若,请求出关于的函数;
(3)若赵先生该月应纳的个税额为3020元,问他的月收入是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分别求适合下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过点A (,-2),B(-2,1);
(2)与椭圆有相同焦点且经过点M(,1).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,求曲线在点处的切线;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:
①函数的图象关于点对称;②函数的图象关于直线对称;③函数在上是减函数;④函数在上的值域为.
其中正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:
温度 | 20 | 25 | 30 | 35 |
产卵数/个 | 5 | 20 | 100 | 325 |
(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);
(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)
参考数据:,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的两条渐近线分别为直线,,经过右焦点且垂直于的直线分别交,于两点,若,,成等差数列,且,则该双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com