精英家教网 > 高中数学 > 题目详情
(2013•辽宁)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=
1
2
b
,且a>b,则∠B=(  )
分析:利用正弦定理化简已知的等式,根据sinB不为0,两边除以sinB,再利用两角和与差的正弦函数公式化简求出sinB的值,即可确定出B的度数.
解答:解:利用正弦定理化简已知等式得:sinAsinBcosC+sinCsinBcosA=
1
2
sinB,
∵sinB≠0,∴sinAcosC+sinCcosA=sin(A+C)=sinB=
1
2

∵a>b,∴∠A>∠B,即∠B为锐角,
则∠B=
π
6

故选A
点评:此题考查了正弦定理,两角和与差的正弦函数公式,以及诱导公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•辽宁)已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁二模)设f(x)是定义在R上的偶函数,它在[0,+∞)上为增函数,且f(
1
3
)>0,则不等式f(log
1
8
x
)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)在△ABC中,a2+b2+c2=2
3
absinC
,则△ABC的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁二模)已知函数f(x)=-2sinxcosx+2cos2x+1
(1)设方程f(x)-1=0在(0,π)内有两个零点x1,x2,求x1+x2的值;
(2)若把函数y=f(x)的图象向左移动m(m>0)个单位,再向下平移2个单位,使所得函数的图象关于y轴对称,求m的最小值.

查看答案和解析>>

同步练习册答案