【题目】平面直角坐标系中,为坐标原点,射线与轴正半轴重合,射线在第一象限,且与轴正半轴的夹角为,在上有点列,在上有点,已知,
(1)求点和的坐标;
(2)求的坐标;
(3)求面积的最大值,并求出此时的值.
【答案】(1)点的坐标为,点的坐标为(2)的坐标为,的坐标为(3)的面积最大为,此时或.
【解析】
(1)由和即可求出点的坐标,由射线在第一象限,且与轴正半轴的夹角为,可求出;
(2)设,则可由得到,根据等比数列的知识即可求出的坐标,由以及等差数列知识可求出,再根据三角函数的定义即可求出的坐标;
(3)由的坐标分别求出,再根据三角形的面积公式即可表示出面积,再判断该式的单调性即可求出最大值以及此时的值.
(1)由得,,因为,所以,即点的坐标为.
由射线在第一象限,且与轴正半轴的夹角为,,根据三角函数的定义可知,点的坐标为即.
(2)设,则可由得到,所以为等比数列,
,故的坐标为.
由可知,为等差数列,因为,所以,
三角函数的定义即可求出的坐标为即.
(3)由的坐标为,的坐标为,所以,的面积为 ,
设,令,解得,
所以 ,故的面积最大为,此时或.
科目:高中数学 来源: 题型:
【题目】(本小题满分13分) 已知双曲线的两个焦点为的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)分别写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)已知点,直线与曲线相交于,两点,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,坐标原点为.椭圆的动弦过右焦点且不垂直于坐标轴, 的中点为,过且垂直于线段的直线交射线于点
(I)证明:点在直线上;
(Ⅱ)当四边形是平行四边形时,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内有个不同的红球,个不同的白球,
(1)从中任取个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆P恒过定点,且与直线相切.
(Ⅰ)求动圆P圆心的轨迹M的方程;
(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是
A. 24B. 16C. 8D. 12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com