精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)求函数的单调区间;

(3)设函数.若对于任意,都有成立,求实数的取值范围.

【答案】(Ⅰ).(Ⅱ)见解析(Ⅲ).

【解析】试题分析:(1)代入,求导,可求出切线方程。(2)因为.又因为的两根>0,所以分

三类讨论单调性。(3)由成立,即,变形.,所以只需

试题解析:(Ⅰ)函数的定义域为.

时,.

所以曲线在点处的切线方程为.

(Ⅱ)因为.

,即,解得.

(1)当,即时,

,得

,得.

所以函数的增区间为,减区间为

(2)当,即时,

,得

,得.

所以函数的增区间为,减区间为.

(3)当,即时,上恒成立,所以函数的增区间为,无减区间.

综上所述:

时,函数的增区间为,减区间为

时,函数的增区间为,减区间为

时,函数的增区间为,无减区间.

(Ⅲ)因为对于任意,都有成立,

,等价于.

,则当时,.

因为当时,,所以上单调递增.

所以.

所以.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是边长为2的等边三角形,
(Ⅰ)求证:平面PAM⊥平面PDM;
(Ⅱ)若点E为PC中点,求二面角P﹣MD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修 4-4]参数方程与极坐标系

在平面直角坐标系中,已知曲线 ,以平面直角坐标系的原点为极点, 轴正半轴为极轴,取相同的单位长度建立极坐标系.已知直线 .

(Ⅰ)试写出直线的直角坐标方程和曲线的参数方程;

(Ⅱ)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

[选修 4-5]不等式选讲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求证:AB1⊥BC1
(2)求二面角B﹣AB1﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4—4:坐标系与参数方程

在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.

1)求圆C的极坐标方程;

2)直线的极坐标方程是,射线与圆C的交点为OP,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)若存在两个极值点,且,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),满足f(1)=0,且在(0,+∞)上单调递增,则xf(x)>0的解集为(
A.{x|x<﹣1或x>1}
B.{x|0<x<1或﹣1<x<0}
C.{x|0<x<1或x<﹣1}
D.{x|﹣1<x<0或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是从成都某中学参加高三体育考试的学生中抽出的40名学生体育成绩(均为整数)的频率分布直方图,该直方图恰好缺少了成绩在区间[70,80)内的图形,根据图形的信息,回答下列问题:
(1)求成绩在区间[70,80)内的频率,并补全这个频率分布直方图,并估计这次考试的及格率(60分及以上为及格);
(2)从成绩在[80,100]内的学生中选出三人,记在90分以上(含90分)的人数为X,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案