精英家教网 > 高中数学 > 题目详情
(2013•肇庆二模)(几何证明选讲选做题)
如图,在Rt△ABC中,斜边AB=12,直角边AC=6,如果以C为圆心的圆与AB相切于D,则⊙C的半径长为
3
3
3
3
分析:在Rt△ABC中,利用勾股定理即可得出BC.又AB与⊙C相切与点D,连接CD,得到CD⊥AB.利用S△ABC=
1
2
AC•BC=
1
2
AB•CD
,即可得出⊙C的半径CD.
解答:解:在在Rt△ABC中,斜边AB=12,直角边AC=6,∴BC=
AB2-AC2
=
122-62
=6
3

∵AB与⊙C相切与点D,连接CD,∴CD⊥AB.
∴S△ABC=
1
2
AC•BC=
1
2
AB•CD
,∴CD=
AC•BC
AB
=
6×6
3
12
=3
3

∴⊙C的半径长为3
3

故答案为3
3
点评:熟练掌握勾股定理、圆的切线的性质和“等面积变形”是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•肇庆二模)(坐标系与参数方程选做题)
若以直角坐标系的x轴的非负半轴为极轴,曲线l1的极坐标系方程为ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直线l2的参数方程为
x=1-2t
y=2t+2
(t为参数),则l1与l2的交点A的直角坐标是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)定义全集U的子集M的特征函数为fM(x)=
1,x∈M
0,x∈CUM
,这里?UM表示集合M在全集U中的补集,已M⊆U,N⊆U,给出以下结论:
①若M⊆N,则对于任意x∈U,都有fM(x)≤fN(x);
②对于任意x∈U都有fCUM(x)=1-fM(x)
③对于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④对于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
则结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)在等差数列{an}中,a15=33,a25=66,则a35=
99
99

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步练习册答案