精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln
x+1x-1

(1)求函数的定义域;   
(2)讨论f(x)的单调性.
分析:(1)直接由对数式的真数大于0,求解分式不等式得函数的定义域;
(2)由函数单调性的定义证明函数在(1,+∞)上的单调性,然后结合奇函数在对称区间上的单调性得函数在(-∞,-1)上的单调性.
解答:解:(1)由
x+1
x-1
>0
,得(x+1)(x-1)>0,
解得:x<-1或x>1.
∴函数f(x)=ln
x+1
x-1
的定义域为{x|x<-1或x>1};
(2)设任意x1>x2>1,
f(x1)-f(x2)=ln
x1+1
x1-1
-ln
x2+1
x2-1

=ln(
x1+1
x1-1
x2-1
x2+1
)
=ln
(x1x2-1)+x2-x1
(x1x2-1)+x1-x2

∵x1>x2>1,
∴x1x2-1+x1-x2>x1x2-1+x2-x1>0,
0<
(x1x2-1)+x2-x1
(x1x2-1)+x1-x2
<1

f(x1)-f(x2)=ln
(x1x2-1)+x2-x1
(x1x2-1)+x1-x2
<0

∴f(x1)<f(x2).
故f(x)=ln
x+1
x-1
在(1,+∞)上为减函数;
又f(-x)=ln
-x+1
-x-1
=ln
x-1
x+1
=-ln
x+1
x-1
=-f(x).
∴f(x)为奇函数.
则f(x)在(-∞,-1)上为减函数.
综上,函数f(x)在(-∞,-1),(1,+∞)上为减函数.
点评:本题考查了对数函数定义域的求法,训练了函数单调性的判断方法,考查了奇函数在对称区间上的单调性,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案