精英家教网 > 高中数学 > 题目详情
5.已知函数$y=sin({\frac{1}{2}x+\frac{π}{3}})$.
(1)求函数的最小正周期;         
(2)求函数在x∈[-2π,2π]上的单调增区间.

分析 (1)由周期公式易得;
(2)解不等式2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$结合x∈[-2π,2π]可得单调递增区间.

解答 解:(1)由周期公式可得T=$\frac{2π}{\frac{1}{2}}$=4π;
(2)由2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得4kπ-$\frac{5π}{3}$≤x≤4kπ+$\frac{π}{3}$,
∴原函数的单调递增区间为[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$](k∈Z)
又∵x∈[-2π,2π],∴当k=0时,函数的单调递增区间为$[{-\frac{5π}{3},\frac{π}{3}}]$.

点评 本题考查三角函数的单调性和周期性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设i为虚数单位,则复数$\frac{3+4i}{i}$的共轭复数为4+3i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|1-$\frac{1}{x}$|,g(x)=f(x)-kx,求:讨论函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f1(x)=sinx,f2(x)=f1′(x),f3(x)=f2′(x),f4(x)=f3′(x),…,fn(x)=fn-1′(x),则f2015(x)等于(  )
A.cosxB.-cosxC.sinxD.-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在 (x2-$\frac{1}{x}$)n的展开式所有二项式系数的和是32,则展开式中各项系数的和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知整数n≥4,集合M={1,2,3,…,n}的所有3个元素的子集记为A1,A2,…,${A_{C_n^3}}$.当n=5时,求集合A1,A2,…,${A_{C_5^3}}$中所有元素的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3-ax2+3x,且x=3是f(x)的极值点.
(1)求实数a的值; 
(2)求f(x)在x∈[1,4]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的解析式为(  )
A.y=2cos($\frac{x}{2}$-$\frac{π}{4}$)+4B.y=2cos($\frac{x}{2}$+$\frac{π}{4}$)+4C.y=4cos($\frac{x}{2}$-$\frac{π}{4}$)+2D.y=4cos($\frac{x}{2}$+$\frac{π}{4}$)+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知在等差数列{an}中,$\frac{{{a_{11}}+{a_{12}}+…+{a_{20}}}}{10}=\frac{{{a_1}+{a_2}+…{a_{30}}}}{30}$,则在等比数列{bn}中,类似的结论为$\root{10}{{b}_{11}•{b}_{12}•…•{b}_{20}}=\root{30}{{b}_{1}•{b}_{2}•{b}_{3}•…•{b}_{30}}$.

查看答案和解析>>

同步练习册答案