精英家教网 > 高中数学 > 题目详情

已知函数).
(I)若的定义域和值域均是,求实数的值;
(II)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

(I) a=2, (II) .

解析试题分析:(I)研究二次函数性质,关键研究对称轴与定义区间之间相对位置关系. 因为函数f(x)对称轴为x=a,抛物线开口向上,在 (1,a)上单调递减,则f(1)=a,f(a)=1,代入解得a=2, (II) 因为在区间上是减函数,所以因此,所以1离开对称轴的距离最远,所以在区间最大值应为,最小值应为,因此对任意的,总有,就可化为,解得,又所以
(1)因为函数f(x)对称轴为x=a,抛物线开口向上,在 (1,a)上单调递减,
则f(1)=a,f(a)=1,代入解得a=2    -6分
(2)可得,显然在区间最大值应为,最小值应为
所以,解得   -14分
考点:二次函数最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·西安模拟)已知函数f(x)=2x,g(x)=+2.
(1)求函数g(x)的值域.
(2)求满足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设).
(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若方程有3个不同的根,求实数的取值范围;
(2)在(1)的条件下,是否存在实数,使得上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,讨论函数在区间上的单调性;
(2)若,对任意的,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求的极大值点;
(2)设函数的图象与函数的图象交于两点,过线段的中点做轴的垂线分别交于点,证明:在点处的切线与在点处的切线不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)令,求的解析式;
(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案