【题目】抛物线的焦点为,在上存在,两点满足,且点在轴上方,以为切点作的切线,与该抛物线的准线相交于,则的坐标为__________.
【答案】
【解析】
作出抛物线的准线,设A、B在l上的射影分别是C、D,连接AC、BD,过B作BE⊥AC于E.由抛物线的定义结合题中的数据,可算出Rt△ABE中,cos∠BAE,得∠BAE=60°,从而得到直线AB的方程,再与抛物线联立,求得A点坐标,求得切线方程,与x=-1联立,求得M的坐标.
作出抛物线的准线l:x=﹣1,设A、B在l上的射影分别是C、D,
连接AC、BD,过B作BE⊥AC于E
∵3,∴设||=m,则||=3m,
由点A、B分别在抛物线上,结合抛物线的定义,得
||=||=m,||=||=3m,
∴||=2m
因此,Rt△ABE中,cos∠BAE,得∠BAE=60°
所以,直线AB的倾斜角∠AFx=60°,
得直线AB的斜率k=tan60°.
直线AB的方程为y(x﹣1),代入y2=4x,可得3x2﹣10x+3=0,
∴x=3或x,
∵A在x轴上方,
∴A(3,,∴设过A的切线的斜率为m,则切线的方程为,
与联立得到,,可得,
∴过A的切线的方程为,与x=-1联立可得
∴的坐标为
故答案为.
科目:高中数学 来源: 题型:
【题目】下列命题中,假命题的是( )
A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交.
B.平行于同一平面的两条直线一定平行.
C.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面.
D.若直线不平行于平面,且不在平面内,则在平面内不存在与平行的直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,定直线,动圆经过点且与直线相切.
(I)求动圆圆心的轨迹方程;
(II)设点为曲线上不同的两点,且,过两点分别作曲线的两条切线,且二者相交于点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差摄氏度 | 10 | 11 | 13 | 12 | 8 |
发芽颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的3组数据恰好是连续天的数据(表示数据来自互不相邻的三天),求的分布列及期望:
(2)根据12月2日至4日数据,求出发芽数关于温差的线性回归方程.由所求得线性回归方稻得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?
附:参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的两个焦点,,设,分别是椭圆的上、下顶点,且四边形的面积为,其内切圆周长为.
(1)求椭圆的方程;
(2)当时,,为椭圆上的动点,且,试问:直线是否恒过一定点?若是,求出此定点坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,2),圆,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求点M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,我国经济持续高速增长如图给出了我国2003年至2012年第二产业增加值与第一产业增加值的差值以下简称为:产业差值的折线图,记产业差值为单位:万亿元.
求出y关于年份代码t的线性回归方程;
利用中的回归方程,分析2003年至2012年我国产业差值的变化情况,并预测我国产业差值在哪一年约为34万亿元;
结合折线图,试求出除去2007年产业差值后剩余的9年产业差值的平均值及方差结果精确到.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
样本方差公式:.
参考数据:,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com