精英家教网 > 高中数学 > 题目详情
已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;
(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.
(1)当k=0或k=-1或k=4时,C表示直线;
当k≠0且k≠-1且k≠4时方程为
x2
k+1
k
+
y2
k+1
4-k
=1,①
方程①表示椭圆的充要条件是
k+1
k
>0 
k+1
4-k
>0
k+1
k
k+1
4-k

即是0<k<2或2<k<4.
(2)方程①表示双曲线的充要条件是
k+1
k
k+1
4-k
<0,
即k<-1或-1<k<0或k>4.
①当k<-1或k>4时,双曲线焦点在x轴上,
a2=
k+1
k
,b2=
k+1
k-4

其一条渐近线的斜率为
b
a
=
k+1
k-4
k+1
k
=
3
,得k=6.
②当-1<k<0时,双曲线焦点在y轴上,
a2=
k+1
4-k
,b2=-
k+1
k

其一条渐近线的斜率为
a
b
=
-
k+1
k
k+1
4-k
=
3
,得k=6(舍),
综上得双曲线方程为
x2
7
6
-
y2
7
2
=1.
(3)若存在,设直线PQ的方程为:y=-x+m.
y=-x+m
6x2-2y2
=7

消去y,
得4x2+4mx-2m2-7=0.②
设P、Q的中点是M(x0,y0),则
x0=-
m
2
y0=
3m
2

M在直线l上,
3m
2
=-
m
2
-1,解得m=-
1
2
,方程②的△>0,
∴存在满足条件的P、Q,直线PQ的方程为y=-x-
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的方程为y2=4x(x>0),曲线E是以F1(-1,0)、F2(1,0)为焦点的椭圆,点P为曲线C与曲线E在第一象限的交点,且|PF2|=
53

(1)求曲线E的标准方程;
(2)直线l与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的方程为y2=4x(x>0),曲线E是以F1(-1,0)、F2(1,0)为焦点的椭圆,点P为曲线C与曲线E在第一象限的交点,且|PF2|=
53

(1)求曲线E的标准方程;
(2)直线l与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的方程为
x2
|k|
+
y2
1-k
=1
,则当C为双曲线时,k的取值范围是
(1,+∞)
(1,+∞)
;当C为焦点在y轴上的椭圆时,k的取值范围是
(-∞,0)∪(0,
1
2
)
(-∞,0)∪(0,
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;
(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州市仲元中学高三数学专题训练:圆锥曲线方程(解析版) 题型:解答题

已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;
(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案