精英家教网 > 高中数学 > 题目详情
15.已知直线2x+2my-1=0与直线3x-2y+7=0垂直,则m的值为(  )
A.-$\frac{2}{3}$B.3C.$\frac{3}{2}$D.$\frac{2}{3}$

分析 根据两直线垂直的性质,两直线垂直时,直线方程中一次项对应系数之积的和等于0,求出实数m的值.

解答 解:由两直线垂直的性质可得直线方程中一次项对应系数之积的和等于0,可得6-4m=0,解得 m=$\frac{3}{2}$,
故选:C.

点评 本题主要考查两直线垂直的性质,两直线垂直时,直线方程中一次项对应系数之积的和等于0,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a6=b3
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知AB是半圆O的直径,O是半圆圆心,AB=8,M、N、P是将半圆圆周四等分的三个分点.
(1)从A、B、M、N、P这5个点中任取3个点,求这3个点组成等腰三角形的概率;
(2)在半圆内任取一点S,求△SOB的面积大于4$\sqrt{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按50个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生产30台,已知生产这些家电产品每台所需工时和每台产值如表:
家电名称空调器彩电冰箱
工时 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{3}$
产值/千元543
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若实数a、b、c满足a+b+c>6,则a、b、c的值(  )
A.都大于2B.至少有一个大于2C.都小于2D.至少有一个小于2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知全集U=R,非空集合A={x|x2-5x+6<0},B={x||x-a|<3}.
(1)当a=2时,求(∁UA)∩B;
(2)命题p:x∈A,命题q:x∈B,若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在[0,5]之间随机取一个数使1<log2(x-1)≤2的成立的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图是一个几何体的三视图,其侧(左)视图中的弧线是半圆,则该几何体的表面积是(  )
A.20+4πB.24+3πC.20+3πD.24+4π

查看答案和解析>>

同步练习册答案