精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=是奇函数,gx)=log2(2x+1)-bx是偶函数.

(1)求a-b;

(2)若对任意的t∈[-1,2],不等式f(t2-2t-1)+f(2t2-k)<0恒成立,求实数k的取值范围.

【答案】(1);(2)

【解析】

(1)由奇、偶函数定义可得;(2)利用f(x)的奇偶性和单调性,将不等式转化为:k>3t2-2t-1t[-1,2]上恒成立,然后转化为最值,最后构造函数求出最大值即可.

(1)∵是奇函数,

∴f(-x)=-f(x),即=-,c化简得:(a+1)(ex+e-x)=0,

∴a+1=0,∴a=-1.

是偶函数,

∴g(-x)=g(x),即=

化简得:(-1+2b)x=0 对一切实数恒成立,b=

故a-b=-1-=-

(2)由(1)知:f(x)==ex-e-x,∴f(x)是R上的奇函数且增函数.

∴f(t2-2t-1)+f(2t2-k)<0 等价于f(t2-2t-1)<-f(2t2-k)=f(k-2t2

等价于t2-2t-1<k-2t2

即k>3t2-2t-1对任意的t∈[-1,2]恒成立.

令h(t)=3t2-2t-1t∈[-1,2],

则k>h(t)max

又h(t)=3t2-2t-1的对称轴为:t=∈[-1,2]

∴t=2时,h(t)max=h(2)=7,

∴k>7

∴实数k的取值范围是:(7,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈(1,+∞), >1;命题q:a∈(0,1),函数y=ax在(﹣∞,+∞)上为减函数,则下列命题为真命题的是(
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知斜三棱柱ABC﹣A1B1C1中,底面ABC是等边三角形,侧面BB1C1C是菱形,∠B1BC=60°.

(1)求证:BC⊥AB1
(2)若AB=2,AB1= ,求二面角C﹣AB1﹣C1(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( .

(1)若 ,求函数的单调减区间;

(2)若时,不等式上恒成立,求实数的取值范围;

(3)当 时,记函数的导函数的两个零点是),求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P-ABCD中,AD⊥面PABBC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是(  )

A. 圆的一部分 B. 椭圆的一部分

C. 球的一部分 D. 抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x﹣1
(1)求a的值
(2)若 ,证明:当x>1时,
(3)对于在(0,1)中的任意一个常数b,是否存在正数x0 , 使得:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业需要建造一个容积为8立方米,深度为2米的无盖长方体水池,已知池壁的造价为每平方米100元,池底造价为每平方米300元,设水池底面一边长为米,水池总造价为元,求关于的函数关系式,并求出水池的最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点均在圆上.

(1)求圆的方程;

(2)若直线与圆相交于两点,求的长;

(3)设过点的直线与圆相交于两点,试问:是否存在直线,使得以为直径的圆经过原点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案