精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy.直线1的参数方程为t为参数).在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ2cosθ.

1)若曲线C关于直线l对称,求a的值;

2)若AB为曲线C上两点.且∠AOB,求|OA|+|OB|的最大值.

【答案】1a022

【解析】

1)直接利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换.

2)利用三角函数关系式的恒等变换和正弦型函数的性质的应用及极径的应用求出结果.

1)直线1的参数方程为t为参数).转换为直角坐标方程为x.

曲线C的极坐标方程为ρ2cosθ,整理得ρ22ρcosθ,转换为直角坐标方程为x2+y22x,转换为(x12+y21.

由于曲线关于直线l对称,所以圆心(10)在直线l上,

a0.

2)由点AB在圆ρ2cosθ上,且∠AOB

所以设∠AOxα

则:|OA|+|OB|2cos,当且仅当时,等号成立.

OA|+|OB|的最大值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点集A{xy|x2+y2≤1}B{xy|x≤4y≥03x4y≥0},则点集Q{xy|xx1+x2yy1+y2,(x1y1)∈A,(x2y2)∈B}所表示的区域的面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)若有两个不同的极值点,且,若不等式恒成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图(其中为虚数单位),则输出的值是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线上任意一点轴作垂线段垂足为,点是线段上的一点,且满足.

1)求点的轨迹的方程;

2)设直线与轨迹交于两点,点为轨迹上异于的任意一点,直线分别与直线交于两点.问:轴正半轴上是否存在定点使得以为直径的圆过该定点?若存在,求出符合条件的定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若恒成立,求实数a的取值范围;

2)若关于x的方程有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

1)当时,求的单调区间;

2)设函数,若的唯一极值点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有五个不同的根,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,在圆:.

1)求实数的值;

2)求过圆心且与直线平行的直线的方程;

3)过点作互相垂直的直线,,与圆交于两点,与圆交于两点,的最大值.

查看答案和解析>>

同步练习册答案