精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinx+1.
(Ⅰ)设ω为大于0的常数,若f(ωx)在区间[-
π
2
3
]
上单调递增,求实数ω的取值范围;
(Ⅱ)设集合A={x|
π
6
≤x≤
3
}
,B={x||f(x)-m|<2},若A∪B=B,求实数m的取值范围.
分析:(Ⅰ)由题意,f(ωx)=2sinωx+1,由ωx∈[-
π
2
π
2
],ω>0,可得x∈[-
π
π
],利用f(ωx)在区间[-
π
2
3
]
上单调递增,可得不等式组,解不等式组,即可求实数ω的取值范围;
(Ⅱ)求出函数的值域,根据A∪B=B,可得A⊆B,从而可得不等式组,解不等式,即可求出实数m的取值范围.
解答:解:(Ⅰ)由题意,f(ωx)=2sinωx+1,由ωx∈[-
π
2
π
2
],ω>0,可得x∈[-
π
π
],
∵f(ωx)在区间[-
π
2
3
]
上单调递增,
π
2
3
π
-
π
≤-
π
2
ω>0

∴0<ω≤
3
4

(Ⅱ)∵A∪B=B,
∴A⊆B,
∵|f(x)-m|<2,
∴m-2<f(x)<m+2,
π
6
≤x≤
3

1
2
≤sinx≤1

∴2≤f(x)≤3,
m-2<2
m+2>3

∴-1<m<4.
点评:本题考查三角函数的性质,考查函数的值域,考查集合知识,考查学生分析解决问题的能力,正确运用正弦函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案