精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2x+a
(a∈R)
,(1)判断f(x)的奇偶性,并说明理由;(2)当a=-1时,讨论函数f(x)在区间(1,+∞)上的单调性.
分析:(1)要判断函数的奇偶性,只要检验f(-x)与f(x)的关系,由于f(-x)=
x2
a-x
f(x)=
x2
a+x
,故需考虑a是否为0,从而要对①a=0②a≠0两种情况进行判断
(2)当a=-1时,f(x)=
x2
x-1
,要判断函数f(x)在区间(1,+∞)上的单调性,只要设x1<x2∈(1,+∞),然后通过判断f(x1)-f(x2)=
x12
x1-1
-
x22
x2-1
的正负可得断f(x1)与f(x2)的大小即可
解答:解:(1)当a=0时,f(x)=
x2
x
,x≠0
,f(-x)=-f(x)成立,所以f(x)是奇函数
当a≠0时,f(-1)=
1
a-1
,f(1)=
1
1+a
,这时f(-1)≠f(1),f(-1)≠-f(1)
所以f(x)不满足f(x)=f(-x)及f(x)=-f(-x)对任意的x都成立,故函数是非奇非偶数
综上可得,当a=0时,函数为奇函数
当a≠0时,函数为非奇非偶数                                                  
(2)当a=-1时,f(x)=
x2
x-1

设x1,x2∈(1,+∞)且x1<x2
则f(x1)-f(x2)=
x12
x1-1
-
x22
x2-1
=
x12x2 -x12-x1x22+x22
(x1-1)(x2-1)

=
x1x2(x1-x2)-(x1+x2)(x1-x2)   
(x1-1)(x2-1)
=
(x1-x2)[x1x2-(x1+x2)]
(x1-1)(x2-1)
 
当x1<x2∈(1,2]时,0<x1-1<x2-1≤1
x1-x2
(x1-1)(x2-1)
<0
,x1x2-(x1+x2)=(x1-1)(x2-1)-1<0
∴f(x1)-f(x2)>0,即f(x1)>f(x2
所以f(x)是区间(1,2]的单调递减函数. 
当x1<x2∈(2,+∞)时,同理可证函数f(x)单调递增
故函数f(x)是区间[1,2]的单调递减函数,在(2,+∞)上单调递增
点评:本题主要考察了函数的奇偶性及函数的单调性的定义的 应用,属于基本方法的考察,解题的难点在于单调性的判断中的变形定号时的计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案