精英家教网 > 高中数学 > 题目详情

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.
(1)证明:EF∥平面SAD;
(2)设SD=2DC,求BD与面SBC所成的角的正弦值.

(1)证明:作FG∥DC交SD于点G,则G为SD的中点.

连接AG,则,又,故
∴AEFG为平行四边形,∴EF∥AG,
又AG?平面SAD,EF?平面SAD.
∴EF∥平面SAD.
(2)解:不妨设DC=2,则SD=4,过D作SC的垂线于交SC于H连接BH,则∠DBH即为DB与面SBC所成的角.
DH=,BD=
所以=
分析:(1)作FG∥DC交SD于点G,则G为SD的中点,利用三角形中位线的性质,可证AEFG为平行四边形,从而可得线线平行,利用线面平行的判定,即可证明EF∥平面SAD.
(2)过D作SC的垂线于交SC于H,连接BH,则∠DBH即为DB与面SBC所成的角,求出DH、DB,从而可求BD与面SBC所成的角的正弦值.
点评:本题考查线面平行,考查线面角,解题的关键是掌握线面平行的判定,作出线面角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A-EF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E为SD的中点.
(1)若F为底面BC边上的一点,且BF=
1
6
BC
,求证:EF∥平面SAB;
(2)底面BC边上是否存在一点G,使得二面角S-DG-A的正切值为
2
?若存在,求出G点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.
(1)证明EF∥平面SAD;
(2)设SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.底面ABCD为矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求证:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步练习册答案