精英家教网 > 高中数学 > 题目详情
11.在海港A正东78nmile处有一小岛B,现甲船从A港出发以30nmile/h的速度驶向B岛,同时乙船以12nmile/h的速度向北偏西30°的方向驶离B岛,不久之后,丙船则向正东向从B岛驶出,当甲乙两船相距最近时,在乙船观测发现丙船在乙船南偏东60°方向,问此时甲、丙两船相距多远?

分析 设当驶出t时,甲乙相距S,构建函数关系式,再利用二次函数求最值的方法求解.

解答 解:设当驶出t时,甲乙相距S;
S2=(12t)2+(78-30t)2-(12t)(78-30t)=1404t2-5616t+6082;
当t=2时,距离最近,此时甲距B岛78-30×2;丙距B岛12×2;
甲丙两船相距=78-30×2+12×2=78-36=42(nmile)

点评 本题考查了勾股定理的知识及方向角的内容,解题的关键是正确的整理出直角三角形求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,四边形ABCD为正方形,PD⊥面ABCD,AE⊥PB于E;
(1)求证:PB⊥面ACE;
(2)若AB=1,PD=2,求二面角A-PB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设偶函数f(x)在(0,+∞)上f'(x)<0,且f(2)=0,则不等式$\frac{f(x)+f(-x)}{x}>0$的解集为(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是①②③写出所有正确结论的序号)
①x∈(-∞,1),f(x)>0;
②若x0∈R,使ax0,bx0,cx0不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x0∈(1,2),使f(x0)=0;
④若△ABC为直角三角形,对于n∈N*,f(2n)>0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{{3+\sqrt{5}}}{2}$D.$\frac{{3-\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,点A,B,F分别为椭圆C的左顶点、上顶点、左焦点,若∠AFB=∠BAF+90°,则椭圆C的离心率是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC和△A1B1C1所在平面相交,并且AA1,BB1,CC1交于一点.
(1)求证:AB和A1B1在同一平面内;
(2)若AB∩A1B1=M,BC∩B1C1=N,AC∩A1C1=P,求证:M,N,P三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,若A=60°,$a=\sqrt{3}$,则$\frac{a+b}{sinA+sinB}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是(  )
A.09,14,19,24B.10,16,22,28C.16,28,40,52D.08,12,16,20

查看答案和解析>>

同步练习册答案