精英家教网 > 高中数学 > 题目详情
20.数列{bn}(bn>0)的首项为1,且前n项和Sn满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S_{n-1}}}$(n≥2).
(1)求{bn}的通项公式;
(2)若数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}前n项和为Tn,问Tn>$\frac{1000}{2009}$的最小正整数n是多少?

分析 (1)数列{bn}(bn>0)的首项为1,前n项和Sn满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S_{n-1}}}$(n≥2).可得$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1,利用等差数列的通项公式可得Sn,再利用递推关系可得bn
(2)$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂项求和”方法即可得出.

解答 解:(1)∵数列{bn}(bn>0)的首项为1,前n项和Sn满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S_{n-1}}}$(n≥2).
∴$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1,∴数列$\{\sqrt{{S}_{n}}\}$构成一个首相为1公差为1的等差数列,
∴$\sqrt{{S}_{n}}$=1+(n-1)×1=n,∴Sn=n2
∴n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1.(n=1时也成立).
∴bn=2n-1.
(2)$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
Tn>$\frac{1000}{2009}$即:$\frac{n}{2n+1}$>$\frac{1000}{2009}$,解得n>$\frac{1000}{9}$.
满足Tn>$\frac{1000}{2009}$的最小正整数为112.

点评 本题考查了等差数列的通项公式及其求和公式、“裂项求和”方法、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+6x+3,(x≤0)}\\{-3x+3,(0<x<1)}\\{-{x}^{2}+4x-3,(x≥1)}\end{array}\right.$
(1)画出函数的图象 (2)根据图象写出f(x)单调区间
(3)利用单调性定义证明f(x)在(-∞,-3]上减少的.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC中,“$A>\frac{π}{6}$”是“$cosA<\frac{1}{2}$”的(  )条件.
A.充要条件B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.集合{1,2,4}的真子集个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若四边形ABCD满足$\overrightarrow{AB}•\overrightarrow{BC}<0$,$\overrightarrow{CD}•\overrightarrow{DA}<0$,$\overrightarrow{BC}•\overrightarrow{CD}<0$,$\overrightarrow{DA}$$•\overrightarrow{AB}$<0,则该四边形为(  )
A.空间四边形B.任意的四边形C.梯形D.平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}-\frac{{y_{\;}^2}}{{b_{\;}^2}}=1(a>0,b>0)$的离心率为$\sqrt{10}$,则双曲线C的渐近线方程为(  )
A.y=±3xB.y=±2xC.$y=±\frac{1}{3}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知以F为焦点的抛物线y2=4x上的两点A,B满足$\overrightarrow{AF}=\frac{3}{2}\overrightarrow{FB}$,则直线AB的斜率为(  )
A.$±\sqrt{3}$B.$±\sqrt{13}$C.±4D.$±2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.$?x∈R,\root{3}{x}+1>0$
B.小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件
C.p∨q为真命题,则命题p与q均为真命题
D.命题“$?{x_0}∈R,{x_0}^2-{x_0}>0$的命题的否定是“?x∈R,x2-x≤0”

查看答案和解析>>

同步练习册答案