【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)若对任意 恒成立,求实数m的最大值.
【答案】
(1)解:∵f(x)=xlnx,
∴f'(x)=lnx+1,
∴f'(x)>0有 ,∴函数f(x)在 上递增,f'(x)<0有 ,
∴函数f(x)在 上递减,
∴f(x)在 处取得极小值,极小值为
(2)解:∵2f(x)≥﹣x2+mx﹣3
即mx≤2xlnx+x2+3,又x>0,
∴ ,
令 ,
令h'(x)=0,解得x=1或x=﹣3(舍)
当x∈(0,1)时,h'(x)<0,函数h(x)在(0,1)上递减
当x∈(1,+∞)时,h'(x)>0,函数h(x)在(1,+∞)上递增,
∴h(x)min=h(1)=4.
∴m≤4,
即m的最大值为4.
【解析】(1)求函数的导数,利用函数单调性和极值之间的关系即可求f(x)的单调区间和极值;(2)利用不等式恒成立,进行参数分离,利用导数即可求出实数m的最大值.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点. (Ⅰ)求证:直线AF∥平面PEC;
(Ⅱ)求PC与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 和 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=6cos2 + sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数.
(1)当时,求函数的单调递增区间;
(2)当时,若函数有三个不同的零点,求的取值范围;
(3)设定义在上的函数在点处的切线方程为,当时,若在内恒成立,则称为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点” 的横坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com