精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线l的参数方程为(其中t为参数,.在以原点O为极点,x轴的非负半轴为极轴所建立的极坐标系中,曲线C的极坐标方程为.设直线l与曲线C相交于AB两点.

1)求曲线C和直线l的直角坐标方程;

2)已知点,求的最大值.

【答案】1;(2.

【解析】

1可得,根据互化公式可得,消去参数可得

2)联立直线l的参数方程与曲线C的直角坐标方程,根据参数的几何意义以及三角函数的值域可得结果.

1)根据题意得,曲线C的极坐标方程为

,即

所以曲线C的直角坐标方程为,即

直线l的普通方程为.

2)联立直线l的参数方程与曲线C的直角坐标方程,

,代入

化简,得.

设点AB所对应的参数分别为

由(1)可知,曲线C是圆心,半径为1的圆,点P在圆外,

由直线参数方程参数的几何意义知,

,当且仅当时取到.

的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论的单调性;

(Ⅱ)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个盒子,甲盒子里有个红球,乙盒子里有个红球和个黑球,现从乙盒子里随机取出个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为个,则随着的增加,下列说法正确的是(

A.增加,增加B.增加,减小

C.减小,增加D.减小,减小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】开学后,某学校食堂为了减少师生就餐排队时间,特推出即点即取的米饭套餐和面食套餐两种,已知小明同学每天中午都会在食堂提供的米饭套餐和面食套餐中选择一种,米饭套餐的价格是每份15元,面食套餐的价格是每份10元,如果小明当天选择了某种套餐,她第二天会有的可能性换另一种类型的套餐,假如第1天小明选择了米饭套餐,第n天选择米饭套餐的概率,给出以下论述:①小明同学第二天一定选择面食套餐;②;③;④前n天小明同学午餐花费的总费用数学期望为.其中正确的是( )

A.②④B.①②③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】足球起源于中国东周时期的齐国,当时把足球称为“蹴鞠”.汉代蹴鞠是训练士兵的手段,制定了较为完备的体制.如专门设置了球场,规定为东西方向的长方形,两端各设六个对称的“鞠域”,也称“鞠室”,各由一人把守.比赛分为两队,互有攻守,以踢进对方鞠室的次数决定胜负.1970年以前的世界杯用球多数由举办国自己设计,所以每一次球的外观都不同,拼块的数目如同掷骰子一样没准.1970年起,世界杯官方用球选择了三十二面体形状的足球,沿用至今.如图Ⅰ,三十二面体足球的面由边长相等的12块正五边形和20块正六边形拼接而成,形成一个近似的球体.现用边长为的上述正五边形和正六边形所围成的三十二面体的外接球作为足球,其大圆圆周展开图可近似看成是由4个正六边形与4个正五边形以及2条正六边形的边所构成的图形的对称轴截图形所得的线段,如图Ⅱ,则该足球的表面积约为( )

参考数据:

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是,离心率,过点的直线交椭圆两点, 的周长为16.

(1)求椭圆的方程;

(2)已知为原点,圆 )与椭圆交于两点,点为椭圆上一动点,若直线轴分别交于两点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,直线相交于两点,当时,

1)求椭圆的标准方程.

2)在椭圆上是否存在点,使得当时,的平分线总是平行于轴?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若存在最大值,且,求实数的取值范围;

2)令,求证:对任意的总存在最小值,且.

查看答案和解析>>

同步练习册答案