精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P-ABCD中,侧面底面ABCD,底面ABCD是直角梯形,

1)求证:平面PBD

2)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为

【答案】1)证明见解析 2

【解析】

1)以D为原点建立空间直角坐标系,利用推出,结合可证明线面垂直;(2)设,由表示出点E的坐标,从而求出平面EBD的一个法向量,代入即可求得.

1)证明:因为侧面底面ABCD

所以底面ABCD,所以

又因为,即

因此可以D为原点建立如图所示的空间直角坐标系,

所以,所以

底面ABCD,可得

又因为,所以平面

2)因为,又

,则

所以.设平面EBD的法向量为

因为,由,得

,则可得平面EBD的一个法向量为

代入,化简得,解得

又由题意知,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是(

A.10010B.10020C.20010D.20020

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]:在直角坐标系中,直线的参数方程为t为参数,),以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,已知直线与曲线C交于不同的两点AB

(1)求直线的普通方程和曲线C的直角坐标方程;

(2)P(12),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCDA1B1C1D1中,侧棱AA1底面ABCDAB∥DC

)求证:CD⊥平面ADD1A1

)若直线AA1与平面AB1C所成角的正弦值为,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足

=2kan对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.

(1)证明:等差数列{an}是“P(3)数列”;

若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,且直线与圆相切,设直线的方程为,若点在直线上,过点作圆的切线,切点为.

(1)求圆的标准方程;

(2)若,试求点的坐标;

(3)若点的坐标为,过点作直线与圆交于两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求的最大值和最小值;

(2)当时,证明:上有且仅有一个极大值点和一个极小值点(分别记为),且为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直线与平面所成角的正弦值;

(2)若点M,N分别在AB,PC上,且平面,试确定点M,N的位置.

查看答案和解析>>

同步练习册答案