分析 根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.
解答 解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和S.
所以该四面体的体积为$\frac{1}{3}$SR,
故答案为:$\frac{1}{3}$SR.
点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [2,+∞) | B. | [$\sqrt{2}$,+∞) | C. | [2,$\sqrt{10}$] | D. | [2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
x(万元) | 2 | 4 | 5 | 6 | 8 |
y(万元) | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ( 2,$\frac{2π}{3}$ ) | B. | ( 2,$\frac{5π}{6}$ ) | C. | (2,$\frac{5π}{3}$) | D. | ( 2,$\frac{11π}{6}$ ) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com