精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3﹣3ax+2(a∈R).
(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0,1]上的最小值.

【答案】
(1)解:当a=1时,f(x)=x3﹣3x+2,切点为(0,2),

∴f′(x)=3x2﹣3,

∴切线的斜率为k=f′(0)=﹣3,

则切线方程为y=﹣3x+2,即3x+y﹣2=0


(2)解:f′(x)=3x2﹣3a=3(x2﹣a).

当a≤0时,f′(x)≥0,∴f(x)在[0,1]上为增函数,

∴f(x)min=f(0)=2;

当a>0时,f′(x)=

①若0< ,即0<a<1时,

当0 时,f′(x)<0,当 时,f′(x)>0.

∴f(x)在[0, )上为减函数,在( ]上为增函数.

②若 ,即a≥1时,f′(x)≤0,∴f(x)在[0,1]上为减函数.

∴f(x)min=f(1)=3﹣3a.

综上:


【解析】(1)把a=1代入函数解析式,求出切点坐标,并求出f′(0),然后由直线方程的点斜式得答案;(2)求出原函数的导函数,对a分类分析,当a≤0时,f′(x)≥0,得f(x)在[0,1]上为增函数,求得函数最小值;当a>0时,f′(x)= .然后由1分界讨论求得函数的最小值.
【考点精析】掌握函数的最大(小)值与导数是解答本题的根本,需要知道求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 均为等边三角形,且平面平面,点中点.

(1)求证: 平面

(2)若的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E的中心在坐标原点,离心率为2,E的右焦点与抛物线C:y2=8x的焦点重合,A、B是C的准线与E的两个交点,则|AB|=(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于或等于90分为优秀,90分以下为非优秀统计成绩后,得到如表的列联表.

优秀

非优秀

总计

甲班

10

乙班

30

合计

100

已知在全部100人中抽到随机抽取1人为优秀的概率为
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名组成一个样本,再从样本中抽出2名学生,求恰好有1个学生在甲班的概率.
参考公式和数据:K2= ,其中n=a+b+c+d.
下面的临界值表供参考:

p(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的普通方程为,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的极坐标方程;

(2)求曲线交点的极坐标,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是递增的等差数列,前n项和为Sn , a1=1,且a1 , a2 , S3成等比数列.
(1)求an及Sn
(2)求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|0<ax﹣1≤5},B={x|﹣ <x≤2},
(1)若a=1,求A∪B;
(2)若A∩B=且a>0,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”,翻译成今天的话是:一只大鼠和一只小鼠分别从的墙两侧面对面打洞,已知第一天两鼠都打了一尺长的洞,以后大鼠每天打的洞长是前一天的2倍,小鼠每天打的洞长是前一天的一半,已知墙厚五尺,问两鼠几天后相见?相见时各打了几尺长的洞?设两鼠x 天后相遇(假设两鼠每天的速度是匀速的),则x=(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案