精英家教网 > 高中数学 > 题目详情

【题目】下列说法中所有正确的序号是_________

①两直线的倾斜角相等,则斜率必相等;

②若动点到定点和定直线的距离相等,则动点的轨迹是抛物线;

③已知是椭圆的两个焦点,过点的直线与椭圆交于两点,则的周长为

④曲线的参数方程为为参数,则它表示双曲线且渐近线方程为

⑤已知正方形,则以为焦点,且过两点的椭圆的离心率为.

【答案】③④⑤

【解析】

利用直线斜率与倾斜角的关系可判断出命题①的正误;根据抛物线的定义可判断出命题②的正误;利用椭圆的定义可判断出命题③的正误;将曲线的方程化为普通方程,即可判断出命题④的正误;利用椭圆的定义以及离心率的定义可判断出命题⑤的正误.

对于命题①,当两直线的倾斜角都为时,两直线的斜率都不存在,命题①错误;

对于命题②,由于点在直线上,所以,动点的轨迹不是抛物线,命题②错误;

对于命题③,椭圆的标准方程为,该椭圆的焦点在轴,其长半轴长为,所以,的周长为,命题③正确;

对于命题④,,即

所以,曲线的方程为,所表示的图形为双曲线,其渐近线方程为

命题④正确;

对于命题⑤,设正方形的边长为,则

设椭圆的长轴长为,则

所以,该椭圆的离心率为,命题⑤正确.

因此,正确命题的序号为③④⑤.

故答案为:③④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列n项和为,且满足.

1)求数列的通项公式:

2)若,求正整数m的值;

3)是否存在正整数m,使得恰好为数列中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的右焦点为,左顶点为,线段的中点为,圆过点,且与交于是等腰直角三角形,则圆的标准方程是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,将沿直线翻折成,连结的中点,则在翻折过程中,下列说法中所有正确的序号是_______.

①存在某个位置,使得

②翻折过程中,的长是定值;

③若,则

④若,当三棱锥的体积最大时,三棱锥的外接球的表面积是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数,当时,,若为锐角三角形的两个内角,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知圆过点,且与直线相切于点,求圆的方程;

2)已知圆轴相切,圆心在直线上,且圆被直线截得的弦长为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在杨辉三角中,去除所有为1的项,依次构成数列,则此数列前135项的和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点向圆引两条切线,切点为,若点的坐标为,则直线的方程为____________;若为直线上一动点,则直线经过定点__________.

查看答案和解析>>

同步练习册答案