精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知函数).
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围.
注:e为自然对数的底数。

解:(Ⅰ)
由于,故当x∈时,lna>0,ax﹣1>0,所以
故函数上单调递增。       ………………………………………4分
(Ⅱ)当a>0,a≠1时,因为,且 在R上单调递增,
有唯一解x=0。
要使函数 有三个零点,所以只需方程 有三个根,
即,只要,解得t=2; ………………………………9分
(Ⅲ)因为存在x1,x2∈[﹣1,1],使得
所以当x∈[﹣1,1]时,
由(Ⅱ)知,

事实上,

因为 
所以 在上单调递增,又
所以  当 x>1 时,
当0<x<1 时,
也就是当a>1时,
当0<a<1时,
① 当时,由,得
解得
②当0<a<1时,由,得
解得
综上知,所求a的取值范围为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数(13分)
(1)若上的最大值
(2)若在区间[1,2]上为减函数,求a的取值范围。
(3)若直线为函数的图象的一条切线,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知二次函数 (,c为常数且1《c《4)的导函数的图象如图所示:

(1).求的值;
(2)记,求上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)若函数.
(1)求函数f(x)的单调递增区间。
(2)求在区间[-3,4]上的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知二次函数
为常数).若直线12与函数的图象以及2,y轴与函数的图象
所围成的封闭图形如阴影所示. 
(1)求、b、c的值;
(2)求阴影面积S关于t的函数S(t)的解析式;
(3)若问是否存在实数m,使得的图象与的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
若函数在(0,4)上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的单调减区间为(0,4).
(1)求k的值;
(2)对任意的t∈[-1,1],关于x的方程2x2+5x+a=f(t)总有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知是定义在上的连续函数,如果仅当时的函数值为0,且,那么下列情形不可能出现的是(   )

A.0是的极大值,也是的极大值
B.0是的极小值,也是的极小值
C.0是的极大值,但不是的极值
D.0是的极小值,但不是的极值

查看答案和解析>>

同步练习册答案