【题目】如图,圆O是一半径为10米的圆形草坪,为了满足周边市民跳广场舞的需要,现规划在草坪上建一个广场,广场形状如图中虚线部分所示的曲边四边形,其中A,B两点在⊙O上,A,B,C,D恰是一个正方形的四个顶点.根据规划要求,在A,B,C,D四点处安装四盏照明设备,从圆心O点出发,在地下铺设4条到A,B,C,D四点线路OA,OB,OC,OD.
(1)若正方形边长为10米,求广场的面积;
(2)求铺设的4条线路OA,OB,OC,OD总长度的最小值.
【答案】
(1)解:连接AB,
∵AB=10,∴正方形ABCD的面积为100,
又OA=OB=10,∴△AOB为正三角形,则 ,
而圆的面积为100π,∴扇形AOB得面积为 ,
又三角形AOB的面积为 .
∴弓形面积为 ,
则广场面积为100+ (平方米);
(2)过O作OK⊥CD,垂足为K,过O作OH⊥AD(或其延长线),垂足为H,
设∠OAD=θ(0<θ< ),
则OH=10sinθ,AH=10cosθ,
∴DH=|AD﹣AH|=|2OH﹣AH|=|20sinθ﹣10cosθ|,
∴OD= = .
∴当θ= 时, .
∴铺设的4条线路OA,OB,OC,OD总长度的最小值为 (米).
【解析】(1)将广场的面积化为正方形与弓形的面积和,求弓形面积利用扇形面积减去三角形的面积来计算;(2)铺设的4条线路OA,OB,OC,OD中OA,OB为圆的半径长,OC,OD长度相等,所以求得OC或OD的最小值即可求得4条线路总长度的最小值 .
【考点精析】认真审题,首先需要了解直线与圆的三种位置关系(直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点).
科目:高中数学 来源: 题型:
【题目】如图所示,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为 .设S的眼睛到地面的距离为 米
(1)求摄影爱好者到立柱的水平距离和立柱的高度;
(2)立柱的顶端有一长2米的彩杆MN绕其中点O在S与立柱所在的平面内旋转.摄影爱好者有一视角范围为 的镜头,在彩杆转动的任意时刻,摄影爱好者是否都可以将彩杆全部摄入画面?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在[80,90)的人数为12人.
(Ⅰ)求此班级人数;
(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.
(i)甲不排在第一位乙不排在最后一位的概率;
(ii)记甲乙二人排在前三位的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F1 , 有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ +alnx.
(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;
(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1 , y1)、B(x2 , y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,已知△ABD,△BCD都是边长为2的等边三角形,E为BD中点,且AE⊥平面BCD,F为线段AB上一动点,记 .
(1)当 时,求异面直线DF与BC所成角的余弦值;
(2)当CF与平面ACD所成角的正弦值为 时,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1, .
(1)求证:PA⊥平面PBC;
(2)若点M在棱PB上,且PM:MB=3,求证CM∥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记Y为所组成的三位数各位数字之和.
(1)求Y是奇数的概率;
(2)求Y的概率分布和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com