【题目】设F1和F2为双曲线 ﹣ =1(a>0,b>0)的两个焦点,若F1 , F2 , P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是( )
A.y=± x
B.y=± x
C.y=± x
D.y=± x
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+1)﹣x2+(2﹣a)x﹣a(a∈R)若存在唯一的正整数x0 , 使得f(x0)>0,则实数a的取值范围是( )
A.[ , ]
B.( , )
C.( , ]
D.(ln3,ln2+1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求证:BD⊥平面ADG;
(2)求直线GB与平面AEFG所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当x∈[0, ]时,f(x)的最小值为2.
(Ⅰ)求a 的值;
(Ⅱ)先将函数y=f (x) 的图象上点的纵坐标不变,横坐标缩小为原来的 ,再将所得的图象向右平移 个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0, ]上所有根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】各项为正的数列{an}满足 ,
(1)当λ=an+1时,求证:数列{an}是等比数列,并求其公比;
(2)当λ=2时,令 ,记数列{bn}的前n项和为Sn , 数列{bn}的前n项之积为Tn , 求证:对任意正整数n,2n+1Tn+Sn为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax﹣1(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a>0时,若f(x)≥0对任意的x∈R恒成立,求实数a的值;
(Ⅲ)求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com