精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数y=f(x)的单调区间;

(2)若对于x∈(0,+∞)都有成立,试求m的取值范围;

(3)记g(x)=f(x)+x﹣n﹣3.当m=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数n的取值范围.

【答案】(1)在(0,2m)内单调递减,在(2m,+)内单调递增; (2)(,+); (3).

【解析】

(1)首先对函数求导,令导数等于零,求得自变量的值,从而判断出导函数在相应区间上的符号,进而得到函数的单调区间;

(2)将恒成立问题转化为最值来处理,结合第一问的结果,判断出函数的最小值点,从而求得函数的最小值,得到结果;

(3)代入函数解析式,将零点问题转化为函数图象交点个数问题,求导研究函数单调性,求得结果.

(1),().

,解得.

可得:函数在(0,2m)内单调递减,在(2m,+)内单调递增.

(2)对于(0,+)都有成立(0,+),

由(1)可得:时,函数取得最小值,

.

化为:,解得.

∴m的取值范围是(,+).

(3)记.

时,函数.

函数在区间上有两个零点函数与函数有两个不同交点,.

可知:函数内单调递减,在内单调递增.

时,函数取得最小值,.

.

.

.

.

即n的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是平面上任意三点,且.的最小值是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数为偶函数,求实数的值;

2)存在实数,使得不等式成立,求实数的取值范围;

3)若方程上有且仅有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线为.

(1)当求证函数的图像(除切点外)均为切线的下方

(2)当的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

1)请画出表中数据的散点图;

2)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程

3)根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗多少吨标准煤?

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查患胃病是否与生活不规律有关,在患胃病与生活不规律这两个分类变量的计算中,下列说法正确的是(

A. 越大,患胃病与生活不规律没有关系的可信程度越大.

B. 越大,患胃病与生活不规律有关系的可信程度越小.

C.若计算得 ,经查临界值表知 ,则在 个生活不规律的人中必有 人患胃病.

D.从统计量中得知有 的把握认为患胃病与生活不规律有关,是指有 的可能性使得推断出现错误.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势次记为次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.

1)求在次游戏中玩家甲胜玩家乙的概率;

2)若玩家甲、乙双方共进行了次游戏,其中玩家甲胜玩家乙的次数记作随机变量,求的分布列及.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高学生的身体素质,某校高一、高二两个年级共名学生同时参与了我运动,我健康,我快乐的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取名和名学生进行测试.下表是高二年级的名学生的测试数据(单位:个/分钟):

学生编号

1

2

3

4

5

跳绳个数

179

181

168

177

183

踢毽个数

85

78

79

72

80

1)求高一、高二两个年级各有多少人?

2)设某学生跳绳/分钟,踢毽/分钟.,且时,称该学生为运动达人”.

①从高二年级的学生中任选一人,试估计该学生为运动达人的概率;

②从高二年级抽出的上述名学生中,随机抽取人,求抽取的名学生中为span>运动达人的人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案