精英家教网 > 高中数学 > 题目详情
设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上,数列{bn}的通项公式为bn=
an+1
an
+
an
an+1
,其前n项和为Tn
(1)求an;   
(2)求证:Tn-2n<2.
分析:(1)由Sn=
1
8
an2
+
1
2
a
n
+
1
2
,知Sn-Sn-1=an=
1
8
an2-an-12)+
1
2
(an-an-1),整理,得(an-an-1)(an-an-1-4)=0,由an>0,能求出an
(2)由bn=
an+1
an
+
an
an+1
=
4n+2
4n-2
+
4n-2
4n+2
=2+2(
1
2n-1
-
1
2n+1
)
,由此能够证明Tn-2n<2.
解答:解:(1)Sn=
1
8
an2
+
1
2
a
n
+
1
2

n≥2,Sn-1=
1
8
an-12
+
1
2
a
n-1
+
1
2

Sn-Sn-1=an=
1
8
an2-an-12)+
1
2
(an-an-1),
整理,得(an-an-1)(an-an-1-4)=0,
∵an>0,
∴an-an-1=4,
a1=
1
8
a12
+
1
2
a
1
+
1
2
,解得a1=2,
∴数列{an}是以2为首项,4为公差的等差数列,
∴an=2+4(n-1)=4n-2.
(2)bn=
an+1
an
+
an
an+1
=
4n+2
4n-2
+
4n-2
4n+2
=2+2(
1
2n-1
-
1
2n+1
)
…(12分)
Tn-2n=2(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)
=2(1-
1
2n+1
)<2
.…(16分)
点评:本题考查数列的通项公式的求法,考查不等式的证明.考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,Sn是其前n项和,且对任意n∈N*都有an2=2Sn-an
(1)求数列{an}的通项公式;
(2)若bn=(2n+1)2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.

查看答案和解析>>

同步练习册答案