精英家教网 > 高中数学 > 题目详情
8、对函数f(x)=2x-|x2-1|-1的零点的个数的判断正确的是(  )
分析:由题意,可将函数f(x)=2x-|x2-1|-1的零点的个数问题转化为两个函数y=2x-1与y=|x2-1|的交点问题,作出两个函数的图象,由图象选出正确选项
解答:解:由题意,函数f(x)=2x-|x2-1|-1的零点的个数即两个函数y=2x-1与y=|x2-1|的交点的个数,两个函数的图象如图
由图知,两个函数有三个交点
故函数f(x)=2x-|x2-1|-1的零点的个数是3
故选A
点评:本题考察函数的零点与方程的根的关系以及方程的根与函数图象交点的关系,解答此类题,关键是做出高质量的图象,由图象辅助得出答案,数形结合是非常重要的数学思想,解题时要根据情况善用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x1,x2∈R,x1≠x2,则下列性质对函数f(x)=2x成立的是
 
.(把满足条件的序号全部写在横线上)
①f(x1+x2)=f(x1)•f(x2)②f(x1•x2)=f(x1)+f(x2
③[f(x1)-f(x2)]•(x1-x2)>0④f(x1)+f(x2)>2f(
x1+x22
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②点(
π2
,0)
是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的4个结论,其中正确的结论是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①点(0,0)是函数y=f(x)图象的一个对称中心;
②函数y=f(x)图象关于y轴对称;
③函数f(x)在[-π,0]上单调递增,在[0,π]上也单调递增;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是
①④
①④

查看答案和解析>>

同步练习册答案