【题目】已知椭圆和双曲线有共同焦点,是它们的一个交点,,记椭圆和双曲线的离心率分别,则的最小值是( )
A. B. C. D.
【答案】A
【解析】
由题意设焦距为2c,椭圆长轴长为2a,双曲线实轴为2m,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义,以及余弦定理推出a2+3m2=4c2,进而求出e12+e22的最小值
由题意设焦距为2c,椭圆长轴长为2a,双曲线实轴为2m,
令P在双曲线的右支上,由双曲线的定义|PF1|-|PF2|=2m,由椭圆定义|PF1|+|PF2|=2a,
可得|PF1|=m+a,|PF2|=a-m,又∠F1PF2=60°,
根据余弦定理得 :|PF1|2+|PF2|2-|PF1||PF2|=4c2,
可得(m+a)2+(a-m)2-(m+a)(a-m)=4c2,整理得a2+3m2=4c2,
即 ,可得 ,
则
当且仅当时,取等号,故选A .
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn.已知2Sn=3n+3.
(1)求{an}的通项公式;
(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中, 且底面,D是PC的中点,已知,AB=2,AC=,PA=2.
(1)求三棱锥P-ABC的体积
(2)求异面直线BC与AD所成角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中是真命题的个数是( )
(1)垂直于同一条直线的两条直线互相平行
(2)与同一个平面夹角相等的两条直线互相平行
(3)平行于同一个平面的两条直线互相平行
(4)两条直线能确定一个平面
(5)垂直于同一个平面的两个平面平行
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com