【答案】
分析:确定圆心坐标和圆的半径,要使切线长的最小,则必须点C到直线的距离最小,利用点到直线的距离公式求出圆心到直线y=x-2的距离即为|PC|的长,然后根据半径r,PC,PM满足勾股定理即可求出此时的切线长.
解答:解:由题意,圆心C(3,-1),半径r=
,
要使切线长的最小,则必须点C到直线的距离最小.
此时,圆心C(3,-1)到直线y=x+2的距离d=
=
∴所求的最小PM=
=4
故选A.
点评:本题的考点是直线与圆的位置关系,考查学生灵活运用点到直线的距离公式化简求值,解题的关键是找出切线长最短时的条件.