分析 设长、宽、高分别为a、b、b,则a2+b2+b2=16,即a2+2b2=16,求出长方体体积的表达式,利用导数,确定函数的单调性,即可求出长方体体积的最大值.
解答 解:设长、宽、高分别为a、b、b,则a2+b2+b2=16,即a2+2b2=16,
${V_{长方体}}=a{b^2}=a×\frac{{(16-{a^2})}}{2}$,
令$f(x)=\frac{{x(16-{x^2})}}{2}=\frac{{16x-{x^3}}}{2}$,则${f^'}(x)=8-\frac{3}{2}{x^2}=0$,
解得$x=-\frac{{4\sqrt{3}}}{3}$(舍去)或$x=\frac{{4\sqrt{3}}}{3}$,
当$x∈(0,\frac{{4\sqrt{3}}}{3})$时,f′(x)>0,$x∈(\frac{{4\sqrt{3}}}{3},+∞)$时,f′(x)<0,
所以$f{(x)_{max}}=f(\frac{{4\sqrt{3}}}{3})=\frac{{64\sqrt{3}}}{9}$,即长方体体积的最大值为$\frac{{64\sqrt{3}}}{9}$.
故答案为:$\frac{{64\sqrt{3}}}{9}$.
点评 本题考查长方体体积的最大值,考查导数知识的运用,正确求出长方体体积,利用导数是关键.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$-$\frac{1}{2}$i | B. | -$\frac{1}{2}$+$\frac{1}{2}$i | C. | $\frac{1}{2}$-$\frac{1}{2}$i | D. | $\frac{1}{2}$+$\frac{1}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,3} | B. | {2,4,5} | C. | {1,2,3,4} | D. | {1,2,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a4-3a-2 | B. | a4-$\frac{3}{a}$-2 | C. | a-2 | D. | 4a-$\frac{3}{a}$-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{3}{4}$ | D. | $\frac{11}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2015,0) | B. | (-∞,-2015) | C. | (-2017,0) | D. | (-∞,-2017) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com