精英家教网 > 高中数学 > 题目详情

 已知椭圆方程是,椭圆左焦点为F1O为坐标原点,A为椭圆上一点,M在线段AF1上,且满足,||=2,则A的横坐标是(    )

A.          B.            C.          D.

 

【答案】

 A    

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,点A、F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.
(1)若P(-1,
3
),PA是⊙O的切线,求椭圆C的方程;
(2)若
PA
PF
是一个常数,求椭圆C的离心率;
(3)当b=1时,过原点且斜率为k的直线交椭圆C于D、E两点,其中点D在第一象限,它在x轴上的射影为点G,直线EG交椭圆C于另一点H,是否存实数a,使得对任意的k>0,都有DE⊥DH?若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,O为原点,点M是椭圆右准线上的动点,以OM为直径的圆与以椭圆长轴为直径的圆交于P、Q两点,直线PQ与椭圆相交于A、B两点,则|AB|的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆两个焦点的坐标分别是(-1,0),(1,0),并且经过点(2,0),则它的标准方程是(  )
A、
x2
2
+
y2
3
=1
B、
x2
3
+
y2
2
=1
C、
x2
3
+
y2
4
=1
D、
x2
4
+
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆的中心在坐标原点,焦点在x轴上,并且焦距为2,短轴与长轴的比是
3
2

(1)求椭圆的方程;
(2)已知椭圆中有如下定理:过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任意一点M(x0,y0)的切线唯一,且方程为
x0x
a2
+
y0y
b2
=1
,利用此定理求过椭圆的点(1,
3
2
)
的切线的方程;
(3)如图,过椭圆的右准线上一点P,向椭圆引两条切线PA,PB,切点为A,B,求证:A,F,B三点共线.

查看答案和解析>>

同步练习册答案