9£®¸ø³öÏÂÁнáÂÛ£º
£¨1£©º¯Êýf£¨x£©=tanxÓÐÎÞÊý¸öÁãµã£»
£¨2£©¼¯ºÏA={x|y=2x+1}£¬¼¯ºÏ B={x|y=x2+x+1}ÔòA¡ÉB={£¨0£¬1£©£¬£¨1£¬3£©}£»
£¨3£©º¯Êý$f£¨x£©=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$µÄÖµÓòÊÇ[-1£¬1]£»
£¨4£©º¯Êý$f£¨x£©=2sin£¨2x+\frac{¦Ð}{3}£©$µÄͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ$£¨\frac{¦Ð}{3}£¬0£©$£»
£¨5£©ÒÑÖªº¯Êýf£¨x£©=2cosx£¬Èô´æÔÚʵÊýx1£¬x2£¬Ê¹µÃ¶ÔÈÎÒâµÄʵÊýx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢£¬Ôò|x1-x2|µÄ×îСֵΪ2¦Ð£®
ÆäÖнáÂÛÕýÈ·µÄÐòºÅÊÇ£¨1£©£¨4£©£¨°ÑÄãÈÏΪ½áÂÛÕýÈ·µÄÐòºÅ¶¼ÌîÉÏ£©£®

·ÖÎö £¨1£©Çó³öÕýÇк¯ÊýµÄÁãµãÅжϣ¨1£©£»
£¨2£©»¯¼òÁ½¼¯ºÏ²¢È¡½»¼¯Åжϣ¨2£©£»
£¨3£©Ð´³ö·Ö¶Îº¯ÊýÇóµÃÖµÓòÅжϣ¨3£©£»
£¨4£©Çó³öÈý½Çº¯ÊýµÄ¶Ô³ÆÖÐÐÄÅжϣ¨4£©£»
£¨5£©°ÑÒÑÖª´æÔÚʵÊýx1£¬x2£¬Ê¹µÃ¶ÔÈÎÒâµÄʵÊýx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢×ª»¯ÎªÇóº¯ÊýµÄÖÜÆÚÅжϣ¨5£©£®

½â´ð ½â£º£¨1£©ÓÉtanx=0£¬µÃx=k¦Ð£¬k¡ÊZ£¬¡àº¯Êýf£¨x£©=tanxÓÐÎÞÊý¸öÁãµã£¬¹Ê£¨1£©ÕýÈ·£»
£¨2£©¼¯ºÏA={x|y=2x+1}=R£¬¼¯ºÏ B={x|y=x2+x+1}=R£¬ÔòA¡ÉB=R£¬¹Ê£¨2£©´íÎó£»
£¨3£©º¯Êý$f£¨x£©=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$=$\left\{\begin{array}{l}{sinx£¬sinx¡Ý0}\\{0£¬sinx£¼0}\end{array}\right.$£¬ÆäÖµÓòÊÇ[0£¬1]£¬¹Ê£¨3£©´íÎó£»
£¨4£©ÓÉ2x+$\frac{¦Ð}{3}=k¦Ð$£¬µÃx=$\frac{k¦Ð}{2}-\frac{¦Ð}{6}$£¬k¡ÊZ£¬È¡k=1£¬µÃx=$\frac{¦Ð}{3}$£¬¡àº¯Êý$f£¨x£©=2sin£¨2x+\frac{¦Ð}{3}£©$µÄͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ$£¨\frac{¦Ð}{3}£¬0£©$£¬¹Ê£¨4£©ÕýÈ·£»
£¨5£©¡ßº¯Êýf£¨x£©=2cosxµÄÖÜÆÚΪ2¦Ð£¬´æÔÚʵÊýx1£¬x2£¬Ê¹µÃ¶ÔÈÎÒâµÄʵÊýx¶¼ÓÐf£¨x1£©¡Üf£¨x£©¡Üf£¨x2£©³ÉÁ¢£¬ËµÃ÷|x1-x2|µÄ×îСֵΪ$\frac{1}{2}$ÖÜÆÚ=¦Ð£¬¹Ê£¨5£©´íÎó£®
¡àÕýÈ·µÄÃüÌâÊÇ£¨1£©£¬£¨4£©£®
¹Ê´ð°¸Îª£º£¨1£©£¨4£©£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿¼²é·ÖÎöÎÊÌâºÍÇó½âÎÊÌâµÄÄÜÁ¦£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªsin¦Á+cos¦Á=$\frac{\sqrt{10}}{5}$£¬ÇÒ0£¼¦Á£¼¦Ð
£¨¢ñ£©Çótan¦ÁµÄÖµ
£¨¢ò£©Çó$\frac{sin2¦Á}{si{n}^{2}¦Á+sin¦Ácos¦Á-cos2¦Á-1}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬OΪ¡÷ABCµÄÍâÐÄ£¬DΪBC±ßÉϵÄÖе㣬c=4£¬$\overrightarrow{AO}$•$\overrightarrow{AD}$=5£¬sinC+sinA-4sinB=0£¬ÔòcosA=£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$B£®$\frac{1}{2}$C£®$\frac{1}{4}$D£®$\frac{\sqrt{2}}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÀëÐÄÂÊ$e¡Ê[{\sqrt{2}£¬2}]$£¬Ôò¸ÃË«ÇúÏߵĽ¥½üÏßÓëʵÖáËù³É½ÇµÄÈ¡Öµ·¶Î§ÊÇ$\frac{¦Ð}{4}$¡Ü¦È¡Ü$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èôm¡¢nΪÁ½Ìõ²»ÖغϵÄÖ±Ïߣ¬¦Á¡¢¦ÂΪÁ½¸ö²»ÖغϵÄƽÃ棬
¢ÙÈç¹û¦Á¡Î¦Â£¬m?¦Á£¬ÄÇôm¡Î¦Â£»
¢ÚÈç¹ûm¡Î¦Â£¬m?¦Á£¬¦Á¡É¦Â=n£¬ÄÇôm¡În£»
¢ÛÈç¹ûm¡Í¦Á£¬¦Â¡Í¦Á£¬ÄÇôm¡Î¦Â£»
¢ÜÈç¹ûm¡Ín£¬m¡Í¦Á£¬n¡Î¦Â£¬ÄÇô¦Á¡Í¦Â£»
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÛC£®¢Ù¢ÜD£®¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®f£¨x£©ÊÇżº¯Êý£¬ÇÒÔÚ£¨-¡Þ£¬0£©ÉÏÊÇÔöº¯Êý£¬ÔòÏÂÁйØϵ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®f£¨-2£©£¼f£¨1£©£¼f£¨3£©B£®f£¨1£©£¼f£¨-2£©£¼f£¨3£©C£®f£¨3£©£¼f£¨-2£©£¼f£¨1£©D£®f£¨-2£©£¼f£¨3£©£¼f£¨1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³ÖÐѧºÅÕÙѧÉúÔÚÊî¼ÙÆÚ¼äÖÁÉٲμÓÒ»´ÎÉç»á¹«Òæ»î¶¯£¨ÒÔϼò³Æ»î¶¯£©£®¸ÃУÎÄѧÉç¹²ÓÐ100ÃûѧÉú£¬ËûÃDzμӻµÄ´ÎÊýͳ¼ÆÈçͼËùʾ£¬Ôò´ÓÎÄѧÉçÖÐÈÎÒâÑ¡1ÃûѧÉú£¬Ëû²Î¼Ó»î¶¯´ÎÊýΪ3µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{10}$B£®$\frac{3}{10}$C£®$\frac{6}{10}$D£®$\frac{7}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª¶þÏîʽ${£¨{x+\frac{1}{x}}£©^n}$µÄÕ¹¿ªÊ½Öи÷ÏîµÄϵÊýºÍΪ256£®
£¨¢ñ£©Çón£»
£¨¢ò£©ÇóÕ¹¿ªÊ½Öеij£ÊýÏ£¨½á¹ûÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚËÄÀâ׶P-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª2µÄÁâÐΣ¬¡ÏBAD=60¡ã£¬PA¡ÍÃæABCD£¬PA=$\sqrt{3}$£¬E£¬F·Ö±ðΪBC£¬PAµÄÖе㣮
£¨1£©ÇóÖ¤£ºBF¡ÎÃæPDE
£¨2£©ÇóµãCµ½ÃæPDEµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸