A. | 直角三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 不能确定 |
分析 根据题意,结合正弦定理可得a:b:c=2:3:4,再由余弦定理算出最大角C的余弦等于-$\frac{1}{4}$,从而得到△ABC是钝角三角形,得到本题答案.
解答 解:∵sinA:sinB:sinC=2:3:4,
∴根据正弦定理,得a:b:c=2:3:4,
设a=2x,b=3x,c=4x,由余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4{x}^{2}+9{x}^{2}-16{x}^{2}}{2×2x×3x}$=-$\frac{1}{4}$
∵C是三角形内角,得C∈(0,π),
∴由cosC=-$\frac{1}{4}$<0,得C为钝角
因此,△ABC是钝角三角形.
故选:C.
点评 本题给出三角形个角正弦的比值,判断三角形的形状,着重考查了利用正、余弦定理解三角形的知识,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $|\overrightarrow a|=\sqrt{{{(\overrightarrow a)}^2}}$ | B. | λ($\overrightarrow a$•$\overrightarrow b$)=$\overrightarrow a$•(λ$\overrightarrow b$) | C. | ($\overrightarrow a$-$\overrightarrow b$)$\overrightarrow c$=$\overrightarrow a$•$\overrightarrow c$-$\overrightarrow b$•$\overrightarrow c$ | D. | $\overrightarrow a$与$\overrightarrow b$共线?$\overrightarrow a$•$\overrightarrow b$=$|{\overrightarrow a}||{\overrightarrow b}|$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com